【題目】在我們學習過的數學教科書中,有一個數學活動,其具體操作過程是:
第一步:對折矩形紙片,使與重合,得到折痕,把紙片展開(如圖①);
第二步:再一次折疊紙片,使點落在上,并使折痕經過點,得到折痕,同時得到線段(如圖②).
如圖②所示建立平面直角坐標系,請解答以下問題:
(Ⅰ)設直線的解析式為,求的值;
(Ⅱ)若的延長線與矩形的邊交于點,設矩形的邊,;
(i)若,,求點的坐標;
(ii)請直接寫出、應該滿足的條件.
【答案】(Ⅰ);(Ⅱ)(i);(ii).
【解析】
(Ⅰ)連接,延長交于點,由折疊的性質可證為等邊三角形,由點的坐標可求得的值;
(Ⅱ)(i)在中,由三角形的性質可求得的長,則可求得的長,可求得點坐標;
(ii)由題意可知,在中,由三角函數的定義可用表示出,則可得到、所滿足的條件.
(Ⅰ)連接AN,延長MN交BC于點P,如圖,
∴EF垂直平分AB,
∴AN=BN,
由折疊知AB=BN,
∴AN=AB=BN,
∴△ABN為等邊三角形,
∴∠ABN=60°,
∴∠PBN=30°,
∵∠ABM=∠NBM=30°,
∴∠BNM=∠BAM=90°,
∴∠BPN=60°,∠MBP=∠MBN+∠PBN=60°,
∴∠BMP=60°,
∴∠MBP=∠BMP=∠BPM=60°,
∴△BMP是等邊三角形,
∵點M在直線上,
∴;
(Ⅱ)(i)由題意可知,
在中,,
∴,解得,
∴,
∴;
(ii)由題意可知,
在中,,,
∴,
∴,
∴.
科目:初中數學 來源: 題型:
【題目】直線y=﹣x+c與x軸交于點A(4,0),與y軸交于點B,拋物線y=﹣x2+bx+c經過A、B兩點.
(1)求拋物線表達式;
(2)點P為拋物線上的一個動點,過點P作垂直于x軸的直線分別交x軸和直線AB于M、N兩點,若P、M、N三點中恰有一點是其他兩點所連線段的中點(三點重合除外),請求出此時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知在△ABC中,AB=AC,∠BAC=α,直線l經過點A(不經過點B或點C),點C關于直線l的對稱點為點D,連接BD,CD.
(1)如圖1,
①求證:點B,C,D在以點A為圓心,AB為半徑的圓上;
②直接寫出∠BDC的度數(用含α的式子表示)為 ;
(2)如圖2,當α=60°時,過點D作BD的垂線與直線l交于點E,求證:AE=BD;
(3)如圖3,當α=90°時,記直線l與CD的交點為F,連接BF.將直線l繞點A旋轉的過程中,在什么情況下線段BF的長取得最大值?若AC=2a,試寫出此時BF的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,E為CD上一點,若△ADE沿直線AE翻折,使點D落在BC邊上點D′處.F為AD上一點,且DF=CD',EF與BD相交于點G,AD′與BD相交于點H.D′E∥BD,HG=4,則BD=__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在每個邊長都為1的小正方形組成的網格中,點、、均為格點.
(1)線段的長度等于______;
(2)若為線段上的動點,以、為鄰邊的四邊形為平行四邊形,當長度最小時,請你借助網格和無刻度的直尺畫出該平行四邊形,并簡要說明你的作圖方法:__________(不要求證明).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:△ABC是⊙O的內接三角形,BT為⊙O的切線,B為切點,P為直線AB上一點,過P作BC的平行線交直線BT于點E,交直線AC于點F.
(1)如圖 (1)所示,當P在線段AB上時,求證:PA·PB=PE·PF;
(2)如圖 (2)所示,當P為線段BA延長線上一點時,第(1)題的結論還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形中,點是邊上一點(不與點重合),點是延長線上一點,且,連接.
(1)求證:
(2)連接,其中
①當四邊形是菱形時,求線段與線段之間的距離;
②若點是的內心,連接,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】圖1、圖2均是的正方形網格,每個小正方形的頂點稱為格點,小正方形的邊長為1,點、、、均在格點上.在圖1、圖2中,只用無刻度的直尺,在給定的網格中按要求畫圖,所畫圖形的頂點均在格點上,不要求寫出畫法.
(1)在圖1中以線段為邊畫一個,使,且的面積為3;
(2)在圖2中以線段為邊畫一個四邊形,使四邊形既是軸對稱圖形又是中心對稱圖形;
(3)直接寫出四邊形的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com