【題目】如圖,在平面直角坐標(biāo)系中,直線x軸、y軸分別相交于點(diǎn)A,B,點(diǎn)C在射線OA上,點(diǎn)D在射線OB上,且OD2OC,以CD的中點(diǎn)為對(duì)稱中心作△COD的對(duì)稱圖形△DEC.設(shè)點(diǎn)C的坐標(biāo)為(0,n),△DEC在直線AB下方部分的面積為S

1)當(dāng)點(diǎn)EAB上時(shí),n   ,當(dāng)點(diǎn)D與點(diǎn)B重合時(shí),n   ;

2)求S關(guān)于n的函數(shù)解析式,并直接寫出自變量n的取值范圍.

【答案】(1);2;(2)

【解析】

1)根據(jù)題意證得四邊形DOCE是矩形,即可得到E-2n,n),D-2n,0),由直線上點(diǎn)的坐標(biāo)特征求得n的值即可;
2)分兩種情況討論:①當(dāng)直線AB經(jīng)過(guò)線段DE時(shí),求得直線與DEEC的交點(diǎn)坐標(biāo),進(jìn)而求得MEN的面積,則根據(jù)S=SEDC-SEMN即可求得S關(guān)于n的函數(shù)解析式;②當(dāng)直線AB經(jīng)過(guò)線段DC時(shí),求得直線與DC的交點(diǎn),然后根據(jù)三角形面積公式即可求得.

解:(1)設(shè)點(diǎn)C的坐標(biāo)為(0n),則D(﹣2n,0),

∵△CODDEC關(guān)于P點(diǎn)成中心對(duì)稱,

PDPC,PEPO

∴四邊形DOCE是平行四邊形,

∵∠DOC90°,

∴四邊形DOCE是矩形,

E(﹣2nn),

點(diǎn)EAB上時(shí),則n(﹣2n+3

解得n;

當(dāng)點(diǎn)D與點(diǎn)B重合時(shí),則0(﹣2n+3,

解得n2,

故答案為,2

2)如圖2,當(dāng)直線AB經(jīng)過(guò)線段DE時(shí),

x=﹣2n代入yx+3y=﹣n+3,把yn代入yx+3求得xn4

M(﹣2n,﹣n+3),Nn4n),

SEMNn+n3)(n4+2n

SSEDCSEMN2nnn+n3)(n4+2n)=﹣n2+10n6n≤2),

當(dāng)直線AB經(jīng)過(guò)線段DC時(shí),

OD2OC,

∴直線DC的解析式為yx+n,

Sn4)(62n)=﹣n2+8n122n≤3).

綜上,S

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,DAB中點(diǎn),AECD,CEAB.

(1)試判斷四邊形ADCE的形狀,并證明你的結(jié)論.

(2)連接BE,若∠BAC=30°,CE=1,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過(guò)市場(chǎng)調(diào)查,整理出某種商品在第x1≤x≤90)天的售價(jià)與銷售量的相關(guān)信息如下表:

時(shí)間x(天)

1≤x50

50≤x≤90

售價(jià)(元/件)

x40

90

每天銷量(件)

2002x

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品的每天利潤(rùn)為y[

1)求出yx的函數(shù)關(guān)系式;

2)問(wèn)銷售該商品第幾天時(shí),當(dāng)天銷售利潤(rùn)最大,最大利潤(rùn)是多少?

3)該商品在銷售過(guò)程中,共有多少天每天銷售利潤(rùn)不低于4800元?請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC,ACB=90°,AC=BC,點(diǎn)EAC上一點(diǎn),連接BE

1)如圖1,AB=,BE=5,AE的長(zhǎng);

2)如圖2,點(diǎn)D是線段BE延長(zhǎng)線上一點(diǎn),過(guò)點(diǎn)AAFBD于點(diǎn)F,連接CD、CF,當(dāng)AF=DF時(shí),求證:DC=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形中,.動(dòng)點(diǎn)從點(diǎn)出發(fā),沿以每秒4個(gè)單位長(zhǎng)度的速度向終點(diǎn)運(yùn)動(dòng).過(guò)點(diǎn)(不與點(diǎn)、重合)作,交于點(diǎn),交于點(diǎn),以為邊向右作正方形.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.

1)①_________________;

②當(dāng)點(diǎn)上時(shí),用含的代數(shù)式直接表示線段的長(zhǎng).

2)當(dāng)點(diǎn)與點(diǎn)重合時(shí),求的值;

3)設(shè)正方形的周長(zhǎng)為,求之間的函數(shù)關(guān)系式;

4)直接寫出對(duì)角線所在的直線將正方形分成兩部分圖形的面積比為12時(shí)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一塊含的三角板()放置在坐標(biāo)系中,直角頂點(diǎn)與原點(diǎn)重合,另兩個(gè)頂點(diǎn)、分別在反比例函數(shù)的圖像上,的值為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖像經(jīng)過(guò)點(diǎn)A(-1,0),并與反比例函數(shù))的圖像交于Bm,4

1)求的值;

2)以AB為一邊,在AB的左側(cè)作正方形,求C點(diǎn)坐標(biāo);

3)將正方形沿著軸的正方向,向右平移n個(gè)單位長(zhǎng)度,得到正方形,線段的中點(diǎn)為點(diǎn),若點(diǎn)和點(diǎn)同時(shí)落在反比例函數(shù)的圖像上,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行八百米跑體能測(cè)試,測(cè)試結(jié)果分為A、B、C、D四個(gè)等級(jí),請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:

(1)求本次測(cè)試共調(diào)查了多少名學(xué)生?

(2)求本次測(cè)試結(jié)果為B等級(jí)的學(xué)生數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該中學(xué)八年級(jí)共有900名學(xué)生,請(qǐng)你估計(jì)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD的頂點(diǎn)AD在直線l上,BAD=60°,以點(diǎn)A為旋轉(zhuǎn)中心將菱形ABCD順時(shí)針旋轉(zhuǎn)αα30°),得到菱形AB′C′D′B′C′交對(duì)角線AC于點(diǎn)M,C′D′交直線l于點(diǎn)N,連接MN,當(dāng)MNB′D′ 時(shí),解答下列問(wèn)題:

(1)求證:△AB′MAD′N;

(2)α的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案