【題目】如圖,中,∠BAC=90°AB=AC,FBC上一點(diǎn),BDAF的延長(zhǎng)線與D,CEAFE,已知CE=5,BD=2ED=__________

【答案】3

【解析】

由“AAS”可證△ABD≌△CAE,可得AD=CE, BD=AE,即可求解.

解:∵BDAF, CEAF
∴∠ADB=AEC=90°,
∴∠BAD+ABD=90°,
∵∠BAC=90°,即∠BAD+CAE=90°,
∴∠ABD=CAE,
ABDCAE

ADB=CEA,∠ABD=CAE,AB=CA
ABDCAE(AAS),
AD=CE, BD=AE
CE=5, BD=2
AD=5 AE=2
DE=ADAE=52=3,

故答案為3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明的爸爸和媽媽上山游玩,爸爸步行,媽媽乘坐纜車,相約在山頂纜車的終點(diǎn)會(huì)合.已知爸爸步行的路程是纜車所經(jīng)線路長(zhǎng)的2.5倍,媽媽在爸爸出發(fā)后50分鐘才坐上纜車,纜車的平均速度為每分鐘180.圖中的折現(xiàn)反映了爸爸行走的路程(米)與時(shí)間(分鐘)之間的函數(shù)關(guān)系.

1)爸爸行走的總路程是 米,他途中休息了 分鐘;

2)當(dāng)時(shí),之間的函數(shù)關(guān)系式是 ;

3)爸爸休息之后行走的速度是每分鐘 米;

4)當(dāng)媽媽到達(dá)纜車終點(diǎn)是,爸爸離纜車終點(diǎn)的路程是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段AB=8cm,射線ANAB,垂足為點(diǎn)A,點(diǎn)C是射線上一動(dòng)點(diǎn),分別以AC,BC為直角邊作等腰直角三角形,得△ACD與△BCE,連接DE交射線AN于點(diǎn)M,則CM的長(zhǎng)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知網(wǎng)格上最小的正方形的邊長(zhǎng)為1.

(1)分別寫出A,B,C三點(diǎn)的坐標(biāo);

(2)作△ABC關(guān)于y軸的對(duì)稱圖形△A′B′C′(不寫作法),想一想:關(guān)于y軸對(duì)稱的兩個(gè)點(diǎn)之間有什么關(guān)系?

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠C=90°DE垂直平分斜邊AB,分別交AB、BCD、E.若∠CAB=∠B+30°,CE=2cm

:1∠AEB 度數(shù).

2BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰直角△ABC中,ACB=90°,P是線段BC上一動(dòng)點(diǎn)(與點(diǎn)B、C不重合),連接AP,延長(zhǎng)BC至點(diǎn)Q,使得CQ=CP,過點(diǎn)QQH⊥AP于點(diǎn)H,交AB于點(diǎn)M

(1)當(dāng)AP平分BAC時(shí),試說明AM=AN.

(2)若PAC=m,求AMQ的大小(用含m的式子表示).

(3)用等式表示線段MBPQ之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小李制作了一張ABC紙片,點(diǎn)D、E分別在邊AB、AC上,現(xiàn)將ABC沿著DE折疊壓平,使點(diǎn)A落在點(diǎn)A′位置.若A=75°,則1+2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸上,將菱形OABC繞原點(diǎn)O順時(shí)針旋轉(zhuǎn)75°至OA’B’C’的位置.若OB=,∠C=120°,則點(diǎn)B’的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A90°,ACAB,CD平分∠ACB,DEBC于點(diǎn)E,若BC15 cm,則△DEB的周長(zhǎng)為(

A.14 cmB.15 cm

C.16 cmD.17 cm

查看答案和解析>>

同步練習(xí)冊(cè)答案