精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,已知直線PQMN,點A在直線PQ上,點C、D在直線MN上,連接AC、AD,∠PAC50°,∠ADC30°,AE平分∠PAD,CE平分∠ACDAECE相交于E

1)求∠AEC的度數;

2)若將圖1中的線段AD沿MN向右平移到A1D1如圖2所示位置,此時A1E平分∠AA1D1CE平分∠ACD1,A1ECE相交于E,∠PAC50°,∠A1D1C30°,求∠A1EC的度數.

3)若將圖1中的線段AD沿MN向左平移到A1D1如圖3所示位置,其他條件與(2)相同,求此時∠A1EC的度數.

【答案】1)∠AEC130°;(2)∠A1EC130°;(3)∠A1EC40°.

【解析】

(1)由直線PQ∥MN,∠ADC=∠QAD=30°,可得∠PAD=150°,再求∠PAE=75°,可得∠CAE=25°;由∠PAC=∠ACN,求得∠ECA=25°,故∠AEC=180°25°25°;

(2)先求出∠QA1D1=30°,∠PA1D1=150°,再求出∠PA1E=∠EA1D1=75°,再求出∠CAQ=130°∠ACN=50°,根據平分線定義得∠ACE=25°,再利用四邊形內角和性質可求∠CEA1

(3)根據平行線性質和角平分線定義可求得∠QA1E=∠2=15°,∠ACE=∠ECN=∠1=25°,再由∠CEA1=∠1+∠2即可求得答案.

(1)如圖1所示:

∵直線PQMN,∠ADC30°,

∴∠ADC=∠QAD30°,

∴∠PAD150°,

∵∠PAC50°,AE平分∠PAD,

∴∠PAE75°,

∴∠CAE25°,

可得∠PAC=∠ACN50°,

CE平分∠ACD

∴∠ECA25°,

∴∠AEC180°﹣25°﹣25°=130°;

(2)如圖2所示:

∵∠A1D1C30°,線段AD沿MN向右平移到A1D1,PQMN

∴∠QA1D130°,

∴∠PA1D1150°,

A1E平分∠AA1D1

∴∠PA1E=∠EA1D175°,

∵∠PAC50°,PQMN,

∴∠CAQ130°,∠ACN50°,

CE平分∠ACD1

∴∠ACE25°,

∴∠CEA1360°﹣25°﹣130°﹣75°=130°;

(3)如圖3所示:

過點EFEPQ,

∵∠A1D1C30°,線段AD沿MN向左平移到A1D1,PQMN

∴∠QA1D130°,

A1E平分∠AA1D1,

∴∠QA1E=∠215°,

∵∠PAC50°,PQMN,

∴∠ACN50°,

CE平分∠ACD1,

∴∠ACE=∠ECN=∠125°,

∴∠CEA1=∠1+215°+25°=40°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知直線l1l2,直線l3和直線l1l2交于C、D兩點,點P在直線CD上.

(1)試寫出圖1中∠APB、∠PAC、∠PBD之間的關系,并說明理由;

(2)如果P點在C、D之間運動時,∠APB、∠PAC、∠PBD之間的關系會發(fā)生變化嗎?

答:   (填發(fā)生或不發(fā)生)

(3)若點PC、D兩點的外側運動時(P點與點CD不重合),如圖2,圖3,試分別寫出∠PAC、∠APB、∠PBD之間的關系,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我縣實施新課程改革后,學生的自主學習、合作交流能力有很大提高,胡老師為了了解班級學生自主學習、合作交流的具體情況,對某班部分學生進行了為期半個月的跟蹤調查,并將調查結果分成四類,A:特別好;B:好;C:一般;D:較差;并將調查結果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據統(tǒng)計圖解答下列問題:

1)本次調查中,胡老師一共調查了  名同學,其中女生共有  ___名;

2)將上面的條形統(tǒng)計圖補充完整;

3)為了共同進步,胡老師想從被調查的A類和D類學生中分別選取一位同學進行一幫一互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了六次測試,測試成績如下表單位:環(huán)

1

2

3

4

5

6

10

9

8

8

10

9

10

10

8

10

7

9

根據表格中的數據,可計算出甲、乙兩人的平均成績都是9環(huán).

1)分別計算甲、乙六次測試成績的方差;

2)根據數據分析的知識,你認為選______名隊員參賽.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網格中給出了格點ABC(頂點是網格線的交點)和格點P

1)以A點為位似中心,ABC在網格中放大成AB1C1,使=2,請畫出AB1C1

2)以P點為三角形的一個頂點,請畫一個格點PMN使PMN∽△ABC,且相似比為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線l3,l4l1l2分別相交于點A、B、CD,且∠1+2180°

1)直線l1l2平行嗎?為什么?

2)點E在線段AD上,∠ABE30°,∠BEC62°,求∠DCE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,直線軸交于點,交軸于點,直線關于軸對稱,交軸于點,

1)求直線的解析式;

2)過點外作直線,過點作于點,點作于點 .求證:

3)如圖2,如果沿軸向右平移,邊交軸于點,點的延長線上的一點,且,軸交于點 ,在平移的過程中,的長度是否為定值,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1所示,邊長為a的正方形中有一個邊長為b的小正方形,如圖2所示是由圖1中陰影部分拼成的一個正方形.

1)設圖1中陰影部分面積為S1,圖2中陰影部分面積為S2.請直接用含a,b的代數式表示S1,S2

2)請寫出上述過程所揭示的乘法公式;

3試利用這個公式計算:(2+1)(22+1)(24+1)(28+1+1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知在△ABC中,DAB的中點,且∠ACD=∠B,若 AB=10,求AC的長.

【答案】5.

【解析】試題分析

由點DAB的中點,AB=10,易得AD=5;再由∠ACD=∠B,∠A=∠A,可證得

ACD∽△ABC,從而可得: ,由此得到AC2=ADAB=50即可解得AC的值.

試題解析

∵∠ACD=∠B∠A=∠A,

∴△ACD∽△ABC

,

AC2=ADAB.

∵DAB的中點,AB=10,

AD=AB=5,

∴AC2=50

解得AC=.

型】解答
束】
22

【題目】口袋中裝有四個大小完全相同的小球,把它們分別標號1,2,3,4,從中隨機摸出一個球,記下數字后放回,再從中隨機摸出一個球,利用樹狀圖或者表格求出兩次摸到的小球數和等于4的概率.

查看答案和解析>>

同步練習冊答案