如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點,連接CE并延長交AD于F.

(1)求證:①△AEF≌△BEC;②四邊形BCFD是平行四邊形;

(2)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,求sin∠ACH的值.

 

 

 

分析: (1)①在△ABC中,由已知可得∠ABC=60°,從而推得∠BAD=∠ABC=60°.由E為AB的中點,得到AE=BE.又因為∠AEF=∠BEC,所以△AEF≌△BEC.

②在Rt△ABC中,E為AB的中點,則CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE=∠D=60度.所以FC∥BD,又因為∠BAD=∠ABC=60°,所以AD∥BC,即FD∥BC,則四邊形BCFD是平行四邊形.

(2)在Rt△ABC中,設BC=a,則AB=2BC=2a,AD=AB=2a.設AH=x,則HC=HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2.

在Rt△ACH中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a.求得HC的值后,利用sin∠ACH=AH:HC求值.

解答: (1)證明:①在△ABC中,∠ACB=90°,∠CAB=30°,

∴∠ABC=60°.

在等邊△ABD中,∠BAD=60°,

∴∠BAD=∠ABC=60°.

∵E為AB的中點,

∴AE=BE.

又∵∠AEF=∠BEC,

∴△AEF≌△BEC.

 

②在△ABC中,∠ACB=90°,E為AB的中點,

∴CE=AB,BE=AB.

∴∠BCE=∠EBC=60°.

又∵△AEF≌△BEC,

∴∠AFE=∠BCE=60°.

又∵∠D=60°,

∴∠AFE=∠D=60°.

∴FC∥BD.

又∵∠BAD=∠ABC=60°,

∴AD∥BC,即FD∥BC.

∴四邊形BCFD是平行四邊形.

 

(2)解:∵∠BAD=60°,∠CAB=30°,

∴∠CAH=90°.

在Rt△ABC中,∠CAB=30°,設BC=a,

∴AB=2BC=2a.

∴AD=AB=2a.

設AH=x,則HC=HD=AD﹣AH=2a﹣x,

在Rt△ABC中,AC2=(2a)2﹣a2=3a2,

在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,

解得x=a,即AH=a.

∴HC=2a﹣x=2a﹣a=a.

∴sin∠ACH==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:如圖1,在△ABC中,AB=AC,點D是邊BC的中點.以BD為直徑作圓O,交邊AB于點P,連接PC,交AD于點E.
(1)求證:AD是圓O的切線;
(2)當∠BAC=90°時,求證:
PE
CE
=
1
2

(3)如圖2,當PC是圓O的切線,E為AD中點,BC=8,求AD的長.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

我們給出如下定義:有一組相鄰內角相等的四邊形叫做等鄰角四邊形.請解答下列問題:
(1)寫出一個你所學過的特殊四邊形中是等鄰角四邊形的圖形的名稱;
(2)如圖1,在△ABC中,AB=AC,點D在BC上,且CD=CA,點E、F分別為BC、AD的中點,連接EF并延長交AB于點G.求證:四邊形AGEC是等鄰角四邊形;
(3)如圖2,若點D在△ABC的內部,(2)中的其他條件不變,EF與CD交于點H,圖中是否存在等鄰角四邊形,若存在,指出是哪個四邊形,不必證明;若不存在,請說精英家教網(wǎng)明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)已知:如圖1,在四邊形ABCD中,BC⊥CD,∠ACD=∠ADC.求證:AB+AC>
BC2+CD2
;
(2)已知:如圖2,在△ABC中,AB上的高為CD,試判斷(AC+BC)2與AB2+4CD2之間的大小關系,并證明你的結論.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,AD和AE分別是△ABC的BC邊上的高和中線,點D是垂足,點E是BC的中點,規(guī)定:λA=
DE
BD
.如圖2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖1,在△ABC中,∠BAC的平分線AD與∠BCA的平分線CE交于點O.
(1)求證:∠AOC=90°+
12
∠ABC;
(2)當∠ABC=90°時,且AO=3OD(如圖2),判斷線段AE,CD,AC之間的數(shù)量關系,并加以證明.

查看答案和解析>>

同步練習冊答案