【題目】東坡商貿(mào)公司購進某種水果成本為20/,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種水果在未來48天的銷售單價(元/)與時間(天)之間的函數(shù)關系式,為整數(shù),且其日銷售量()與時間(天)的關系如下表:

時間(天)

1

3

6

10

20

日銷售量

118

114

108

100

80

1)已知之間的變化符合一次函數(shù)關系,試求在第30天的日銷售量;

2)哪一天的銷售利潤最大?最大日銷售利潤為多少?

【答案】1)第30天的日銷售量為;(2)當時,

【解析】

1)設y=kt+b,利用待定系數(shù)法即可解決問題.

2)日利潤=日銷售量×kg利潤,據(jù)此分別表示前24天和后24天的日利潤,根據(jù)函數(shù)性質(zhì)求最大值后比較得結論.

1)設y=kt+b,把t=1,y=118t=3,y=114代入得到:

解得,

y=-2t+120

t=30代入上式,得:y=-2×30+120=60

所以在第30天的日銷售量是60kg

2)設第天的銷售利潤為元,則

時,由題意得,

=

=

t=20時,w最大值為1600元.

時,

∵對稱軸t=44,a=20,

∴在對稱軸左側wt增大而減小,

t=25時,w最大值為210元,

綜上所述第20天利潤最大,最大利潤為1600元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線經(jīng)過A,BC三點.

(1)求拋物線的解析式。

(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標為m,AMB的面積為S.求S關于m的函數(shù)關系式,并求出S的最大值.

(3)若點P是拋物線上的動點,點Q是直線上的動點,判斷有幾個位置能夠使得點PQ、B、O為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系內(nèi),以原點O為圓心,1為半徑作圓,點P在直線上運動,過點P作該圓的一條切線,切點為A,則PA的最小值為  

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于反比例函數(shù)y=(k≠0),下列所給的四個結論中,正確的是( 。

A. 若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上

B. k>0時,yx的增大而減小

C. 過圖象上任一點Px軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為k

D. 反比例函數(shù)的圖象關于直線y=﹣x成軸對稱

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點,點,過點的直線垂直于線段,點是直線上在第一象限內(nèi)的一動點,過點軸,垂足為,把沿翻折,使點落在點處,若以,,為頂點的三角形與△ABP相似,則滿足此條件的點的坐標為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校組織首屆“數(shù)學文化節(jié)”活動,旨在引導同學們感受數(shù)學魅力,提升數(shù)學素養(yǎng),活動中,九年級全體同學參加了“趣味數(shù)學知識競賽”.活動中獲得“數(shù)學之星”稱號的小穎得到了四枚紀念章,(除頭像外完全相同),如圖所示,四枚紀念章上分別印有四位數(shù)學家的頭像,她將紀念章背面朝上放在桌面上,然后從中隨機選取兩枚送給妹妹,求小穎送給妹妹的兩枚紀念章中恰好有一枚印有華羅庚頭像的概率.(提示:答題時可用序號表示相應的紀念章)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了扎實推進精準扶貧工作,某地出臺了民生兜底、醫(yī)保脫貧、教育救助、產(chǎn)業(yè)扶持、養(yǎng)老托管和易地搬遷這六種幫扶措施,每戶貧困戶都享受了25種幫扶措施,現(xiàn)把享受了2種、3種、4種和5種幫扶措施的貧困戶分別稱為A、BC、D類貧困戶.為檢査幫扶措施是否落實,隨機抽取了若干貧困戶進行調(diào)查,現(xiàn)將收集的數(shù)據(jù)繪制成下面兩幅不完整的統(tǒng)計圖:

請根據(jù)圖中信息回答下面的問題:

1)本次抽樣調(diào)查了多少戶貧困戶?

2)抽查了多少戶C類貧困戶?并補全統(tǒng)計圖;

3)若該地共有13000戶貧困戶,請估計至少得到4項幫扶措施的大約有多少戶?

4)為更好地做好精準扶貧工作,現(xiàn)準備從D類貧困戶中的甲、乙、丙、丁四戶中隨機選取兩戶進行重點幫扶,請用樹狀圖或列表法求出恰好選中甲和丁的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】蕭山區(qū)垃圾分類掀起“綠色革命”為調(diào)查居民對垃圾分類的了解情況,調(diào)查小組對某小區(qū)進行抽樣調(diào)查并將調(diào)查結果繪制成了統(tǒng)計圖(如圖).已知調(diào)查中“基本了解”的人數(shù)占調(diào)查人數(shù)的60%

1)計算此次調(diào)查人數(shù),并補全統(tǒng)計圖;

2)若該小區(qū)有住戶1000人,請估計該小區(qū)對垃圾分類“基本了解”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點O00),點A(﹣30).已知拋物線y=﹣x2+2mx+3m為常數(shù)),頂點為P

1)當拋物線經(jīng)過點A時,頂點P的坐標為   ;

2)在(1)的條件下,此拋物線與x軸的另一個交點為點B,與y軸交于點C.點Q為直線AC上方拋物線上一動點.

①如圖1,連接QA、QC,求QAC的面積最大值;

②如圖2,若∠CBQ45°,請求出此時點Q坐標.

查看答案和解析>>

同步練習冊答案