【題目】如圖,在中,點(diǎn)為直線上一點(diǎn),點(diǎn)延長線上一點(diǎn),且,連接

求證:;

當(dāng)時(shí),求的度數(shù);

點(diǎn)的外心,當(dāng)點(diǎn)在直線上運(yùn)動(dòng),且點(diǎn)恰好在內(nèi)部或邊上時(shí),直接寫出點(diǎn)運(yùn)動(dòng)的路徑的長,

【答案】(1)見解析;(2):∠E=65°25°;(3

【解析】

1)(1)利用“邊角邊”證明即可;

2)分兩種情況:點(diǎn)D在線段BC上時(shí)和點(diǎn)DBC延長線上時(shí),利用全等三角形對(duì)應(yīng)角相等,推出∠E=ADB,再根據(jù)等腰直角三角形的性質(zhì)求出∠ACB=CAB=45°,根據(jù)外角性質(zhì)求出∠ADB,即可解答;

3)過點(diǎn)BBF垂直AC,交ACF,作DC邊的垂直平分線交BF于點(diǎn)P,過點(diǎn)FFGBC,交BC于點(diǎn)G,證明BFAC的垂直平分線,從而推出點(diǎn)P即為三角形CAD的外心,根據(jù)點(diǎn)恰好在內(nèi)部或邊上,確定點(diǎn)運(yùn)動(dòng)的路徑為BF,求BF的長即可.

(1)∵∠ABC=90°,

∴∠CBE=90°=ABC,

AB=CB, BE=BD

ABD≌△CBE;

2)當(dāng)點(diǎn)D在線段BC上時(shí),

ABD≌△CBE,

∴∠E=ADB,

AB=CB,∠ABC=90°,

∴∠ACB=BAC=45°,

∴∠E=ADB=45°+20°=65°;

當(dāng)點(diǎn)DBC延長線上時(shí),如圖,

∵△ABD≌△CBE,

∴∠BEC=∠ADB,

∵AB=CB,∠ABC=90°

∴∠ACB=∠BAC=45°,

∴∠BEC=∠ADB=45°-20°=25°

綜上:∠E=65°25°.

3)如圖,過點(diǎn)B作BF垂直AC,交ACF,作DC邊的垂直平分線交BF于點(diǎn)P,過點(diǎn)FFGBC,交BC于點(diǎn)G,

BFAC,

BFAC的垂直平分線,

∴點(diǎn)P即為三角形CAD的外心.

PBF上一點(diǎn),

由題意可知點(diǎn)恰好在內(nèi)部或邊上,

∴點(diǎn)運(yùn)動(dòng)的路徑為BF,

BFAC的垂直平分線,

BF=,

即點(diǎn)P的運(yùn)動(dòng)路徑長為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正比例函數(shù)和反比例函數(shù)的圖像都經(jīng)過點(diǎn),且為雙曲線上的一點(diǎn),為坐標(biāo)平面上一動(dòng)點(diǎn),垂直于軸,垂直于軸,垂足分別是.

1)寫出正比例函數(shù)和反比例函數(shù)的關(guān)系式.

2)當(dāng)點(diǎn)在直線上運(yùn)動(dòng)時(shí),直線上是否存在這樣的點(diǎn),使得的面積相等?如果存在,請(qǐng)求出點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)(),若于點(diǎn),當(dāng)__________時(shí),為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AC=BC=4,∠C=90°,點(diǎn)DBC上,且CD=3DB,將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則tanBED的值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科普小組有5名成員,身高(單位:cm)分別為:160165,170163,172,把身高160 cm的成員替換成一位165 cm的成員后,現(xiàn)科普小組成員的身高與原來相比,下列說法正確的是( )

A.平均數(shù)變小,方差變小B.平均數(shù)變大,方差變大

C.平均數(shù)變大,方差不變D.平均數(shù)變大,方差變小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同型號(hào)的甲、乙兩輛車加滿氣體燃料后均可行駛210km.它們各自單獨(dú)行駛并返回的最遠(yuǎn)距離是105km.現(xiàn)在它們都從A地出發(fā),行駛途中停下來從甲車的氣體燃料桶抽一些氣體燃料注入乙車的氣體燃料桶,然后甲車再行駛返回A地,而乙車?yán)^續(xù)行駛,到B地后再行駛返回A地.則B地最遠(yuǎn)可距離A地(  )

A.120kmB.140kmC.160kmD.180km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖,在△ABD中,BABD.在BD的延長線上取點(diǎn)E,C,作△AEC,使EAEC,若∠BAE90°,∠B45°,求∠DAC的度數(shù).

答案:∠DAC=45°

思考:(1)如果把以上“問題”中的條件“∠B45°”去掉,其余條件不變,那么∠DAC的度數(shù)會(huì)改變嗎?說明理由;

2)如果把以上“問題”中的條件“∠B45°”去掉,再將“∠BAE90°”改為“∠BAEn°”,其余條件不變,求∠DAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車經(jīng)營店銷售型,型兩種品牌自行車,今年進(jìn)貨和銷售價(jià)格如下表:(今年1年內(nèi)自行車的售價(jià)與進(jìn)價(jià)保持不變)

型車

型車

進(jìn)貨價(jià)格(/)

1000

1100

銷售價(jià)格(/)

1500

今年經(jīng)過改造升級(jí)后,型車每輛銷售價(jià)比去年增加400元.已知型車去年1月份銷售總額為3.6萬元,今年1月份型車的銷售數(shù)量與去年1月份相同,而銷售總額比去年1月份增加

1)若設(shè)今年1月份的型自行車售價(jià)為/輛,求的值?(用列方程的方法解答)

2)該店計(jì)劃8月份再進(jìn)一批型和型自行車共50輛,且型車數(shù)量不超過型車數(shù)量的2倍,應(yīng)如何進(jìn)貨才能使這批自行車獲利最多?

3)該店為吸引客源,準(zhǔn)備增購一種進(jìn)價(jià)為500元的型車,預(yù)算用8萬元購進(jìn)這三種車若干輛,其中型與型的數(shù)量之比為,則該店至少可以購進(jìn)三種車共多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的進(jìn)步和網(wǎng)絡(luò)資源的豐富,在線學(xué)習(xí)已成為更多人的自主學(xué)習(xí)選擇.某校計(jì)劃為學(xué)生提供以下四類在線學(xué)習(xí)方式:在線閱讀、在線聽課、在線答題和在線討論.為了解學(xué)生需求,該校隨機(jī)對(duì)本校部分學(xué)生進(jìn)行了你對(duì)哪類在線學(xué)習(xí)方式最感興趣的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

根據(jù)圖中信息,解答下列問題:

1)求本次調(diào)查的學(xué)生總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

2)求扇形統(tǒng)計(jì)圖中在線討論對(duì)應(yīng)的扇形圓心角的度數(shù);

3)該校共有學(xué)生人,請(qǐng)你估計(jì)該校對(duì)在線閱讀最感興趣的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案