【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.

求證:
(1)△ABE≌△CDF;
(2)四邊形BFDE是平行四邊形.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴∠A=∠C,AB=CD,

在△ABE和△CDF中,

,

∴△ABE≌△CDF(SAS);


(2)證明:∵四邊形ABCD是平行四邊形,

∴AD∥BC,AD=BC,

∵AE=CF,

∴AD-AE=BC-CF,

即DE=BF,

∴四邊形BFDE是平行四邊形.


【解析】(1)根據(jù)平行四邊形的性質(zhì)得到等角相等、對邊相等,再根據(jù)SAS得到△ABE≌△CDF;(2)根據(jù)平行四邊形的性質(zhì)得到對邊平行且相等,再根據(jù)平行四邊形的判定方法一組對邊平行且相等的四邊形是平行四邊形,得到四邊形BFDE是平行四邊形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖在△ABC中,BF、CF是角平分線,DE∥BC,分別交AB、AC于點D、E,DE經(jīng)過點F.結(jié)論:①△BDF和△CEF都是等腰三角形;②DE=BD+CE; ③△ADE的周長=AB+AC;④BF=CF.其中正確的是(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過A(x1,y1),B(x2,y2),且x2=1+x1時,y2=y1﹣3,則k等于(  )

A. 2 B. 3 C. ﹣2 D. ﹣3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,BE與CD相交于點G,且OE=OD,則AP的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,規(guī)定拋物線的伴隨直線為.例如:拋物線的伴隨直線為,

(1)在上面規(guī)定下,拋物線的頂點為 .伴隨直線為 ;拋物線與其伴隨直線的交點坐標為

(2)如圖,頂點在第一象限的拋物線與其伴隨直線相交于點 (在點 的右側(cè))與 軸交于點

的值;

如果點是直線上方拋物線的一個動點,的面積記為,當 取得最大值 時,的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“一帶一路”倡議下,我國已成為設(shè)施聯(lián)通,貿(mào)易暢通的促進者,同時也帶動了我國與沿線國家的貨物交換的增速發(fā)展,如圖是湘成物流園2016年通過“海、陸(汽車)、空、鐵”四種模式運輸貨物的統(tǒng)計圖.

請根據(jù)統(tǒng)計圖解決下面的問題:

(1)該物流園2016年貨運總量是多少萬噸?

(2)該物流園2016年空運貨物的總量是多少萬噸?并補全條形統(tǒng)計圖;

(3)求條形統(tǒng)計圖中陸運貨物量對應的扇形圓心角的度數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若2m=5,2n=6,則2m+2n=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市今年約有140000人報名參加初中學業(yè)水平考試,用科學記數(shù)法表示140000為(
A.14×104
B.14×103
C.1.4×104
D.1.4×105

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x的值:﹣3x13810

查看答案和解析>>

同步練習冊答案