【題目】已知,點(diǎn)是線段所在平面內(nèi)任意一點(diǎn),分別以、為邊,在同側(cè)作等邊和等邊,聯(lián)結(jié)、交于點(diǎn).
(1)如圖1,當(dāng)點(diǎn)在線段上移動時(shí),線段與的數(shù)量關(guān)系是:________;
(2)如圖2,當(dāng)點(diǎn)在直線外,且,仍分別以、為邊,在 同側(cè)作等邊和等邊,聯(lián)結(jié)、交于點(diǎn).(1)的結(jié)論是否還存在?若成立,請證明;若不成立,請說明理由.此時(shí)是否隨的大小發(fā)生變化?若變化,寫出變化規(guī)律,若不變,請求出的度數(shù);
(3)如圖3,在(2)的條件下,聯(lián)結(jié),求證: 平分.
【答案】(1) ;(2)成立,證明見解析, ;(3) 證明見解析.
【解析】試題分析:(1)直接寫出答案即可.
(2)證明ΔACD≌ΔECB,得到∠CEB=∠CAD,此為解題的關(guān)鍵性結(jié)論;借助內(nèi)角和定理即可解決問題.
(3)過點(diǎn)C分別作CM⊥AD于M,CN⊥EB于N,由ΔACD≌ΔECB,得到CM=CN,從而得到結(jié)論.
試題解析:解:(1)∵△ACE、△CBD均為等邊三角形,∴AC=EC,CD=CB,∠ACE=∠BCD,∴∠ACD=∠ECB;
在△ACD與△ECB中,∵AC=EC,∠ACD=∠ECB,CD=CB,∴△ACD≌△ECB(SAS),∴AD=BE,故答案為:AD=BE.
(2)AD=BE成立,∠APE不隨著∠ACB的大小發(fā)生變化,始終是60°.
證明如下:
∵ΔACE和ΔBCD是等邊三角形,∴AC=EC,CD=CB,∠ACE=∠BCD,∴∠BCE=∠ACD,
在ΔACD和ΔECB中,∵AC=EC,∠BCE=∠ACD,CD=CB,∴ΔACD≌ΔECB,∴AD=BE.
∵ΔACD≌ΔECB,∴∠CAD=∠CEB,∵∠APB=∠PAE+∠PEA,∴∠APB=∠CAE+∠CEA=120°,∴∠APE=60°;
(3)過點(diǎn)C分別作CM⊥AD于M,CN⊥EB于N,∵ΔACD≌ΔECB,∴CM=CN,∴CP平分∠DPE.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y=y1+y2,y1與x+1成正比例,y2與x+1成反比例,當(dāng)x=0時(shí),y=﹣5;當(dāng)x=2時(shí),y=﹣7.
(1)求y與x的函數(shù)關(guān)系式;
(2)當(dāng)y=5時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用我們學(xué)過的知識,可以導(dǎo)出下面這個(gè)形式優(yōu)美的等式:
a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2],
該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔美.
(1)請你檢驗(yàn)這個(gè)等式的正確性;
(2)若a=2 016,b=2 017,c=2 018,你能很快求出a2+b2+c2-ab-bc-ac的值嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】人們在長期的數(shù)學(xué)實(shí)踐中總結(jié)了許多解決數(shù)學(xué)問題的方法,形成了許多光輝的數(shù)學(xué)想法,其中轉(zhuǎn)化思想是中學(xué)教學(xué)中最活躍,最實(shí)用,也是最重要的數(shù)學(xué)思想,例如將不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形就是研究圖形問題比較常用的一種方法。
問題提出:求邊長分別為的三角形面積。
問題解決:在解答這個(gè)問題時(shí),先建立一個(gè)正方形網(wǎng)格(每個(gè)小正方形的邊長為1),再在網(wǎng)格中畫出邊長分別為的格點(diǎn)三角形△ABC(如圖①),AB=是直角邊為1和2的直角三角形斜邊,BC=是直角邊分別為1和3的直角三角形的斜邊,AC=是直角邊分別為2和3 的直角三角形斜邊,用一個(gè)大長方形的面積減去三個(gè)直角三角形的面積,這樣不需求△ABC的高,而借用網(wǎng)格就能計(jì)算出它的面積。
(1)請直接寫出圖①中△ABC的面積為_______________ 。
(2)類比遷移:求邊長分別為的三角形面積(請利用圖②的正方形網(wǎng)格畫出相應(yīng)的△ABC,并求出它的面積)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于任意兩點(diǎn)A(x1,y1)B (x2,y2),規(guī)定運(yùn)算:
(1)A⊕B=(x1+x2,y1+y2);
(2)A⊙B=x1x2+y1y2;
(3)當(dāng)x1=x2且y1=y2時(shí),A=B.
有下列四個(gè)命題:
①若有A(1,2),B(2,﹣1),則A⊕B=(3,1),A⊙B=0;
②若有A⊕B=B⊕C,則A=C;
③若有A⊙B=B⊙C,則A=C;
④(A⊕B)⊕C=A⊕(B⊕C)對任意點(diǎn)A、B、C均成立.
其中正確的命題為______(只填序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用我們學(xué)過的知識,可以導(dǎo)出下面這個(gè)形式優(yōu)美的等式:
a2+b2+c2-ab-bc-ac= [(a-b)2+(b-c)2+(c-a)2],
該等式從左到右的變形,不僅保持了結(jié)構(gòu)的對稱性,還體現(xiàn)了數(shù)學(xué)的和諧、簡潔美.
(1)請你檢驗(yàn)這個(gè)等式的正確性;
(2)若a=2 016,b=2 017,c=2 018,你能很快求出a2+b2+c2-ab-bc-ac的值嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),∠AOB=45°,點(diǎn)P、Q分別是邊OA,OB上的兩點(diǎn),且OP=2cm.將∠O沿PQ折疊,點(diǎn)O落在平面內(nèi)點(diǎn)C處.
(1)①當(dāng)PC∥QB時(shí),OQ= ;
②當(dāng)PC⊥QB時(shí),求OQ的長.
(2)當(dāng)折疊后重疊部分為等腰三角形時(shí),求OQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求符合下列條件的拋物線y=ax2-1的函數(shù)關(guān)系式:
(1)通過點(diǎn)(-3,2);
(2)與y=x2的開口大小相同,方向相反;
(3)當(dāng)x的值由0增加到2時(shí),函數(shù)值減少4.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com