(2013•昌平區(qū)二模)如圖,?ABCD中,E是CD的延長線上一點,BE與AD交于點F,CD=2DE.若△DEF的面積為1,則?ABCD的面積為
12
12
分析:求出CE=3DE,AB=2DE,求出
DE
CE
=
1
3
,
DE
AB
=
1
2
,根據(jù)平行四邊形的性質(zhì)得出AB∥CD,AD∥BC,推出△DEF∽△CEB,△DEF∽△ABF,求出
S△DEF
S△CEB
=(
DE
EC
2=
1
9
S△DEF
S△ABF
=(
DE
AB
2=
1
4
,求出△CEB的面積是9,△ABF的面積是4,得出四邊形BCDF的面積是8,即可得出平行四邊形ABCD的面積.
解答:解:∵四邊形ABCD是平行四邊形,
∴AD=BC,AB=CD,
∵CD=2DE,
∴CE=3DE,AB=2DE,
DE
CE
=
1
3
DE
AB
=
1
2
,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD∥BC,
∴△DEF∽△CEB,△DEF∽△ABF,
S△DEF
S△CEB
=(
DE
EC
2=
1
9
,
S△DEF
S△ABF
=(
DE
AB
2=
1
4
,
∵△DEF的面積為1,
∴△CEB的面積是9,△ABF的面積是4,
∴四邊形BCDF的面積是9-1=8,
∴平行四邊形ABCD的面積是8+4=12,
故答案為:12.
點評:本題考查了平行四邊形性質(zhì),相似三角形的性質(zhì)和判定的應(yīng)用,注意:相似三角形的面積比等于相似比的平方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)二模)如圖,AC∥FE,點F、C在BD上,AC=DF,BC=EF.
求證:AB=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)二模)在水平的講臺桌上放置圓柱形筆筒和長方體形粉筆盒(如圖),則它的主視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)二模)在一次學(xué)校田徑運動會上,參加男子跳高的15名運動員的成績?nèi)缦卤硭荆?br />
成績(m) 1.30 1.35 1.40 1.45 1.47 1.50
人數(shù) 1 2 4 3 3 2
這些運動員跳高成績的中位數(shù)和眾數(shù)分別是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)二模)如圖,在△ABC中,∠C=90°,BC=6,D,E分別在AB,AC上,將△ADE沿DE翻折后,點A落在點A′處,若A′為CE的中點,則折痕DE的長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•昌平區(qū)二模)正三角形ABC的邊長為2,動點P從點A出發(fā),以每秒1個單位長度的速度,沿A→B→C→A的方向運動,到達(dá)點A時停止.設(shè)運動時間為x秒,y=PC2,則y關(guān)于x的函數(shù)的圖象大致為( 。

查看答案和解析>>

同步練習(xí)冊答案