如圖所示,∠AOB=30°,OC平分∠AOB,P為OC上任意一點(diǎn),PD∥OA交OB于點(diǎn)D,PE⊥OA于點(diǎn)E,若PE=2cm,則PD=
4
4
cm.
分析:首先過(guò)點(diǎn)P作PF⊥OB于點(diǎn)F,由OC平分∠AOB,PE⊥OA于點(diǎn)E,易得PF=PE,由PD∥OA,可求得∠PDF=30°,然后由含30°角的直角三角形的性質(zhì),求得答案.
解答:解:過(guò)點(diǎn)P作PF⊥OB于點(diǎn)F,
∵OC平分∠AOB,PE⊥OA,
∴PF=PE=2cm,
∵PD∥OA,
∴∠PDF=∠AOB=30°,
∴PD=2PF=4cm.
故答案為:4.
點(diǎn)評(píng):此題考查了角平分線的性質(zhì)以及含30°角的直角三角形的性質(zhì).此題難度適中,注意掌握輔助線的作法,注意掌握數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,∠AOB是平角,OM、ON分別是∠AOC、∠BOD的平分線.
(1)已知∠AOC=30°,∠BOD=60°,求∠MON的度數(shù);
(2)如果只已知“∠COD=90°”,你能求出∠MON的度數(shù)嗎?如果能,請(qǐng)求出;如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

74、如圖所示,∠AOB=70°,∠COD=80°,求∠AOD-∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△AOB為正三角形,點(diǎn)A、B的坐標(biāo)分別為A(2,a),B(b,0),求a,b的值及△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•邵東縣模擬)在平面直角坐標(biāo)系中,如圖所示,△AOB是邊長(zhǎng)為2的等邊三角形,將△AOB繞著點(diǎn)B按順時(shí)針?lè)较蛐D(zhuǎn)得到△DCB,使得點(diǎn)D落在x軸的正半軸上,連接OC,AD.
(1)求證:OC=AD;
(2)求OC的長(zhǎng);
(3)求過(guò)A、D兩點(diǎn)的直線的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案