【題目】如圖,在平面直角坐標系中,直線l的函數(shù)表達式為,點的坐標為,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點,以為圓心,為半徑畫圓,交直線l于點,交x軸正半軸于點按此做法進行下去,其中的長為______

【答案】

【解析】分析:連接P1O1,P2O2,P3O3,易求得PnOn垂直于x軸,可得圓的周長,再找出圓半徑的規(guī)律即可解題.

詳解:連接P1O1,P2O2,P3O3

P1是⊙O2上的點,

P1O1=OO1,

∵直線l解析式為y=x,

∴∠P1OO1=45°,

∴△P1OO1為等腰直角三角形,即P1O1x軸,

同理,PnOn垂直于x軸,

圓的周長,

∵以O1為圓心,O1O為半徑畫圓,交x軸正半軸于點O2,以O2為圓心,O2O為半徑畫圓,交x軸正半軸于點O3,以此類推,

OOn=2n-1,

=2πOOn=π2n-1=2n-2π,

n=2017時,=22015π.

故答案為 22015π.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知點都在直線上,分別為中點,直線上所有線段的長度之和為19,則__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的頂點A在x軸的正半軸上,頂點D在y軸的正半軸上,點B、點C在第一象限,sin∠OAD=,線段AD、AB的長分別是方程x2﹣11x+24=0的兩根(AD>AB).

(1)求點B的坐標;

(2)求直線AB的解析式;

(3)在直線AB上是否存在點M,使以點C、點B、點M為頂點的三角形與△OAD相似?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將繞點C順時針旋轉(zhuǎn),使點B落在AB邊上點處,此時點A的對應(yīng)點恰好落在BC的延長線上,下列結(jié)論錯誤的是  

A. B.

C. D. 平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABOC的頂點O在坐標原點,邊BOx軸的負半軸上,,頂點C的坐標為,x反比例函數(shù)的圖象與菱形對角線AO交于點D,連接BD,當軸時,k的值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,線段EF過平行四邊形ABCD的對角線的交點O,交AD于點E,交BC于點F。已知AB4,BC5,EF3,那么四邊形EFCD的周長是_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AD的切線,切點為AAB的弦,過點B,交于點C,連接AC,過點C,交AD于點D,連接AO并延長AOBC于點M,交于點E,交過點C的直線于點P,且

求證:;

判斷直線PC的位置關(guān)系,并說明理由;

,求PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為發(fā)展旅游經(jīng)濟,我市某景區(qū)對門票釆用靈活的售票方法吸引游客.門票定價為50/人,非節(jié)假日打折售票,節(jié)假日按團隊人數(shù)分段定價售票,即人以下(含人)的團隊按原價售票;超過人的團隊,其中人仍按原價售票,超過人部分的游客打折售票.設(shè)某旅游團人數(shù)為人,非節(jié)假日購票款為(元),節(jié)假日購票款為(元).之間的函數(shù)圖象如圖所示.

1)觀察圖象可知:   ;   ;   ;

2)直接寫出,之間的函數(shù)關(guān)系式;

3)某旅行社導游王娜于51日帶團,520日(非節(jié)假日)帶團都到該景區(qū)旅游,共付門票款1900元,,兩個團隊合計50人,求兩個團隊各有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,鐵路MN和公路PQ在點O處交匯,∠QON30°.公路PQA處距O240米.如果火車行駛時,周圍200米以內(nèi)會受到噪音的影響.那么火車在鐵路MN上沿ON方向以20/秒的速度行駛時,A處受噪音影響的時間為( 。

A. 16B. 18C. 20D. 22

查看答案和解析>>

同步練習冊答案