【題目】如圖,已知AB是反比例函數(shù)y圖象上兩點,BPx軸,垂足為P.已知∠AOP=45°,OA=4, tan∠BOP

(1)求點A的坐標;

(2)連接AB,求四邊形AOPB的面積.

【答案】(1)A(2,2);(2)4+2

【解析】試題分析:(1)、過點A作AC⊥OP交OP于點C,根據(jù)等腰直角三角形的性質(zhì)得出AC和OC的長度,從而得到點A的坐標;(2)、根據(jù)點A的坐標求出反比例函數(shù)解析式,根據(jù)∠BOP的正切值設(shè)點B的坐標為(2m,m),然后代入函數(shù)解析式求出m的值,最后根據(jù)四邊形AOPB的面積等于四邊形ACPB的面積加上△AOC的面積得出答案.

試題解析:(1)、過點AACOP OP于點C 在Rt△AOC中,∵∠AOP=45°.

ACOC=2,即A(2,2

(2)把A(2,2)代入yk=8,即y

在Rt△OBP中,tan∠BOP,即OP=2BP,設(shè)BPm,即B(2mm

B(2m,m)代入y,m=2,即BP=2,OP=4

S四邊形AOPBS四邊形ACPBSCPB22(2+2)(4-2)=4+2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)有一條紙帶如圖甲所示,怎樣檢驗紙帶的兩條邊線是否平行?說明你的方法和理由.

(2)如圖乙,將一條上下兩邊互相平行的紙帶折疊,設(shè)∠1為x度,請用x的代數(shù)式表示∠α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知m是一元二次方程x2+x5的實數(shù)根,求代數(shù)式(2m1)(2m+1)﹣mm3)﹣7的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點O為坐標原點,直線y=x+nx軸、y軸分別交于BC兩點,拋物線y=ax2+bx+3(a0)CB兩點,交x軸于另一點A,連接AC,且tanCAO=3

(1)求拋物線的解析式;

(2)若點P是射線CB上一點,過點Px軸的垂線,垂足為H,交拋物線于Q,設(shè)P點橫坐標為t,線段PQ的長為d,求出dt之間的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量t的取值范圍;

(3)(2)的條件下,當點P在線段BC上時,設(shè)PH=e,已知d,e是以y為未知數(shù)的一元二次方程:y2(m+3)y+(5m22m+13)=0 (m為常數(shù))的兩個實數(shù)根,點M在拋物線上,連接MQ、MH、PM,且.MP平分QMH,求出t值及點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果商從批發(fā)市場用8000元購進了大櫻桃和小櫻桃各200千克,大櫻桃的進價比小櫻桃的進價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.

(1)大櫻桃和小櫻桃的進價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?

(2)該水果商第二次仍用8000元錢從批發(fā)市場購進了大櫻桃和小櫻桃各200千克,進價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應(yīng)為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】港珠澳大橋總長度5500000米被稱為新世界七大奇跡之一,則數(shù)字5500000用科學記數(shù)法表示為( 。

A.55×105B.55×106C.0.55×105D.5.5×105

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】 一個數(shù)的平方等于它的本身的數(shù)是____________

平方根等于它的本身的數(shù)是______________

算術(shù)平方根等于它的本身的數(shù)是__________

立方根等于它的本身的數(shù)是______________

大于0且小于π的整數(shù)是________________

滿足<x <的整數(shù)x_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進行下去,A10B10C10D10E10F10的邊長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC(BC>AC),ACB=90°,點DAB邊上,DEAC于點E.設(shè)點F在線段EC上,點G在射線CB上,以F,C,G為頂點的三角形與EDC有一個銳角相等,FGCD于點P,問:線段CP可能是CFG的高線還是中線?或兩者都有可能?請說明理由.

查看答案和解析>>

同步練習冊答案