26、如圖,以銳角△ABC的邊AC、AB為邊向外作正方形ACDE和正方形ABGF,連接BE、CF.
(1)哪兩個圖形可以通過旋轉而相互得到?請指出旋轉中心和旋轉角.
(2)試探索BE和CF的數(shù)量和位置關系?直接寫出結果,不必說明理由.
分析:(1)觀察△ABE和△AFC的位置關系,可確定旋轉中心,旋轉方向,旋轉角;
(2)由旋轉的性質可知,旋轉前后的三角形全等,可知對應邊相等,即BE=CF,利用互余關系可證BE⊥CF.
解答:解:(1)△ABE和△AFC可以通過旋轉而相互得到,旋轉中心是A,旋轉角為90°;

(2)BE=CF,BE⊥CF.
理由如下:
∵△ABE和△AFC可以通過旋轉而相互得到,旋轉中心是A,旋轉角為90°,
∴BE=CF,BE⊥CF.
點評:本題考查了旋轉的性質,正方形的性質及三角形全等的性質,關鍵是根據(jù)圖形中兩個三角形的位置關系解題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

17、如圖,以銳角△ABC的邊AB、AC向外作正方形APQB和正方形AEFC,連接PE,作AD⊥BC,垂足為D,延長DA交PE于點H.過P作PM⊥DM,垂足為M,過點E作EN⊥DM,垂足為N.
(1)不再增加線條或字母,在圖中找出一對全等三角形,并給出證明;
(2)求證:PH=HE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,以銳角△ABC的邊AC、AB為邊向外作正方形ACDE和正方形ABGF,連接BE、CF.
(1)試探索BE和CF的關系?并說明理由.
(2)你能找到哪兩個圖形可以通過旋轉而相互得到,并指出旋轉中心和旋轉角.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以銳角△ABC的邊AB為直徑作半圓⊙O交邊BC、CA于點E、F.過點E、F分別作⊙O的切線得交點P.求證:CP⊥AB.

查看答案和解析>>

科目:初中數(shù)學 來源:廣東省期末題 題型:解答題

如圖,以銳角△ABC的邊AC、AB為邊向外作正方形ACDE和正方形ABGF,連接BE、CF.
(1)試探索BE和CF的關系?并說明理由。
(2)你能找到哪兩個圖形可以通過旋轉而相互得到,并指出旋轉中心和旋轉角。

查看答案和解析>>

同步練習冊答案