如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D.
試說明:AC∥DF.

【答案】分析:根據(jù)已知條件∠1=∠2及對頂角相等求得同位角∠2=∠3,從而推知兩直線DB∥EC,所以同位角∠C=∠ABD;然后由已知條件∠C=∠D推知內錯角∠D=∠ABD,所以兩直線AC∥DF.
解答:解:∵∠1=∠2(已知)                                      (1分)
∠1=∠3(  對頂角相等  )                            (2分)
∴∠2=∠3(等量代換)                                       (3分)
∴DB∥EC     (  同位角相等,兩直線平行    )      (5分)
∴∠C=∠ABD     (  兩直線平行,同位角相等      )         (7分)
又∵∠C=∠D(已知)                                        (8分)
∴∠D=∠ABD(   等量代換    )                               (10分)
∴AC∥DF(  內錯角相等,兩直線平行  )                          (12分)
點評:本題考查了平行線的判定與性質.解答此題的關鍵是注意平行線的性質和判定定理的綜合運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D.
試說明:AC∥DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D.
試說明:AC∥DF.
解:∵∠1=∠2(已知),
∠1=∠3(
對頂角相等
),
∴∠2=∠3(等量代換).
EC
DB
(同位角相等,兩直線平行).
∴∠C=∠ABD (
兩直線平行,同位角相等
).
又∵∠C=∠D(已知),
∴∠D=∠ABD(等量代換).
∴AC∥DF(
內錯角相等,兩直線平行
).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

39、如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D,那么DF∥AC,請完成它成立的理由.
∵∠1=∠2,∠2=∠3,∠1=∠4(
對頂角的性質

∴∠3=∠4(
等量代換

BD
CE
,(
內錯角相等兩直線平行
),
∴∠C=∠ABD(
兩直線平行,同位角相等

∵∠C=∠D(
已知

∴∠D=∠ABD(
等量代換

∴DF∥AC(
內錯角相等,兩直線平行
).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、幾何題
①.如圖所示,直線AB∥CD,∠1=75°,求∠2的度數(shù).

②.如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D,求證DF∥AC.

③.如圖,(1)∵AD∥BC
∴∠FAD=
∠ABC
(兩直線平行,同位角相等)

∵∠1=∠2
AB
CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、(1)如圖,已知:AB∥CD,∠B+∠D=180°,那么直線BC與ED的位置關系如何?并說明理由.
解:
BC∥ED
,
理由:∵AB∥CD(已知)
∠B=∠C
兩直線平行,內錯角相等

∵∠B+∠D=180°(已知)
∠C+∠D=180°
(等量代換)
∴BC∥ED (
同旁內角互補,兩直線平行
);

(2)如圖,E點為DF上的點,B為AC上的點,∠1=∠2,∠C=∠D.
試說明:AC∥DF(7分)
解:∵∠1=∠2(已知)
∠1=∠3(
對頂角相等

∴∠2=∠3(等量代換)
EC
DB
同位角相等,兩直線平行

∴∠C=∠ABD (
兩直線平行,同位角相等

又∵∠C=∠D(已知)
∴∠D=∠ABD(
等量代換

∴AC∥DF(
內錯角相等,兩直線平行
).

查看答案和解析>>

同步練習冊答案