【題目】從﹣1,0,1,3,4,這五個數(shù)中任選一個數(shù)記為a,則使雙曲線y= 在第一、三象限且不等式組 無解的概率是

【答案】
【解析】解:∵雙曲線y= 在第一、三象限,
∴7﹣3a>0,
解得:a< ,
∵不等式組 無解,
∴a≤3,
∴雙曲線y= 在第一、三象限且不等式組 無解,則a< ,
即a=﹣1,0,1;
∴使雙曲線y= 在第一、三象限且不等式組 無解的概率是:
所以答案是:
【考點精析】利用一元一次不等式組的解法和反比例函數(shù)的性質(zhì)對題目進行判斷即可得到答案,需要熟知解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 );性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減。 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,已知∠B∠C的平分線相交于點F,經(jīng)過點FDE//BC,交ABD,交AC于點E,若BD+CE=9,則線段DE的長為( )

A. 9 B. 8 C. 7 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,點E、F分別在AB、BC上,DEF為等腰直角三角形,DEF=90°AD+CD=10,AE=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】七中育才學(xué)校排球活動月即將開始,其中有一項為墊球比賽,體育組為了了解七年級學(xué)生的訓(xùn)練情況,隨機抽取了七年級部分學(xué)生進行1分鐘墊球測試,并將這些學(xué)生的測試成績(即1分鐘的個數(shù),且這些測試成績都在60~180范圍內(nèi))分段后給出相應(yīng)等級,具體為:測試成績在60~90范圍內(nèi)的記為D級,90~120范圍內(nèi)的記為C級,120~150范圍內(nèi)的記為B級,150~180范圍內(nèi)的記為A級.現(xiàn)將數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計圖,其中在扇形統(tǒng)計圖中A級對應(yīng)的圓心角為90°,請根據(jù)圖中的信息解答下列問題:

(1)在扇形統(tǒng)計圖中,A級所占百分比為   ;

(2)在這次測試中,一共抽取了   名學(xué)生,并補全頻數(shù)分布直方圖;

(3)在(2)中的基礎(chǔ)上,在扇形統(tǒng)計圖中,求D級對應(yīng)的圓心角的度數(shù);

(4)A,B,C,D等級的平均成績分別為165、135、105、75個,你能估算出學(xué)校七年級同學(xué)的平均水平嗎?若能,請計算出來.(保留準(zhǔn)確值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中:

3x=﹣4系數(shù)化為1x=﹣;

52x移項得x52;

去分母得22x1)=1+3x3);

22x1)﹣3x3)=1去括號得4x23x91

其中正確的個數(shù)有( 。

A. 0 B. 1 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知DE⊥AC,BF⊥AC,垂足分別是E、F,AE=CF,DC∥AB,

(1)試證明:DE=BF;

(2)連接DF、BE,猜想DF與BE的關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年某月的月歷上圈出了相鄰的三個數(shù)a、b、c,并求出了它們的和為39,這三個數(shù)在月歷中的排布不可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù) ,下列結(jié)論中,不正確的是( 。
A.圖象必經(jīng)過點(1,2)
B.yx的增大而增大
C.圖象在第一、三象限內(nèi)
D.若x>1,則0<y<2

查看答案和解析>>

同步練習(xí)冊答案