【題目】如圖,菱形ABCD的對角線AC、BD的長分別是6cm、8cm,AE⊥BC于點E,則AE的長是(
A. cm
B. cm
C. cm
D.5 cm

【答案】B
【解析】解:∵四邊形ABCD是菱形, ∴CO= AC=3cm,BO= BD=4cm,AO⊥BO,
∴BC= =5cm,
∴S菱形ABCD= = ×6×8=24cm2 ,
∵S菱形ABCD=BC×AE,
∴BC×AE=24,
∴AE= cm.
故選:B.
【考點精析】本題主要考查了菱形的性質(zhì)的相關(guān)知識點,需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某體育用品商場采購員要到廠家批發(fā)購進籃球和排球共100只,付款總額不得超過11 815元.已知兩種球廠家的批發(fā)價和商場的零售價如右表,試解答下列問題:

品名

廠家批發(fā)價(元/只)

市場零售價(元/只)

籃球

130

160

排球

100

120


(1)該采購員最多可購進籃球多少只?
(2)若該商場把這100只球全部以零售價售出,為使商場獲得的利潤不低于2580元,則采購員至少要購籃球多少只,該商場最多可盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:

(1)2

(2)=﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實驗室里,水平桌面上有甲、乙、丙三個相 同高度的圓柱形容器容器足夠高,底面半徑之比為1:2:1,用兩個相同的管子在10cm高度處連通即管子底部離容器底10cm,現(xiàn)三個容器中,只有乙中有水,水位高4cm,如圖所示若每分鐘同時向甲和丙注入相同量的水,開始注水1分鐘,甲的水位上升3cm則開始注入 分鐘水量后,甲的水位比乙高1cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了做好大課間活動,計劃用400元購買10件體育用品,備選體育用品及單價如下表(單位:元)

備選體育用品

籃球

排球

羽毛球拍

單價(元)

50

40

25

(1)400元全部用來購買籃球和羽毛球拍共10件,問籃球和羽毛球拍各購買多少件?

(2)400元全部用來購買籃球、排球和羽毛球拍三種共10件,能實現(xiàn)嗎?(若能實現(xiàn)直接寫出一種答案即可,若不能請說明理由.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的面積為12,△ABC是等邊三角形,E在正方形ABCD內(nèi),對角線AC上有一點P使PE+PD的和最小,這個最小值為( )

A. B. C. 3 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A2,y1)、B4,y2)都在反比例函數(shù)k0)的圖象上,y1y2的大小關(guān)系為( 。

A. y1y2 B. y1y2 C. y1=y2 D. 無法確定

【答案】B

【解析】試題k0時,y=在每個象限內(nèi),yx的增大而增大,∴y1y2,故選B.

考點:反比例函數(shù)增減性.

型】單選題
結(jié)束】
17

【題目】如圖, ABC中,AC=3、AB=4、BC=5, PBC上一動點,PGAC于點G,PHAB

于點H,MGH的中點,P在運動過程中PM的最小值為(

A. 2.4 B. 1.4

C. 1.3 D. 1.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+b與反比例函數(shù)y= 的圖象相交于A(1,4),B兩點,延長AO交反比例函數(shù)圖象于點C,連接OB.
(1)求k和b的值;
(2)直接寫出一次函數(shù)值小于反比例函數(shù)值的自變量x的取值范圍;
(3)在y軸上是否存在一點P,使S△PAC= S△AOB?若存在請求出點P坐標,若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點 EF ABCD 對角線上兩點,在條件①DEBF;②∠ADE=∠CBF; ③AFCE;④∠AEB=∠CFD 中,添加一個條件,使四邊形 DEBF 是平行四邊形,可添加 的條件是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

同步練習冊答案