如圖:直角梯形ABCD中,AD∥CB,∠DCB=90°,AD<CB,E為CD上一點,∠ABE=45°,AE=10,BC=CD=12,則CE=   
【答案】分析:過B作DA的垂線交DA的延長線于M,M為垂足,延長DM到G,使MG=CE,連接BG.求證△BEC≌△BMG,△ABE≌△ABG,設(shè)CE=x,在直角△ADE中,根據(jù)AE2=AD2+DE2求x的值,可以求CE的長度.
解答:解:過B作DA的垂線交DA的延長線于M,M為垂足,
延長DM到G,使MG=CE,連接BG,
∴∠AMB=90°,
∵AD∥CB,∠DCB=90°,
∴∠D=90°,
∴∠AMB=∠DCB=∠D=90°,
∴四邊形BCDM為矩形.
∵BC=CD,
∴四邊形BCDM是正方形,
∴BC=BM,且∠ECB=∠GMB,MG=CE,
∴Rt△BEC≌Rt△BMG.
∴BG=BE,∠CBE=∠GBM,
∵∠CBE+∠EBA+∠ABM=90°,且∠ABE=45°
∴∠CBE+∠ABM=45°
∴∠ABM+∠GBM=45°
∴∠ABE=∠ABG=45°,
∴△ABE≌△ABG,AG=AE=10.
設(shè)CE=x,則AM=10-x,
AD=12-(10-x)=2+x,DE=12-x,
在Rt△ADE中,AE2=AD2+DE2,
∴100=(x+2)2+(12-x)2,
即x2-10x+24=0;
解得:x1=4,x2=6.
故CE的長為4或6
點評:本題考查了直角三角形中勾股定理的運(yùn)用,考查了全等三角形的判定和對應(yīng)邊相等的性質(zhì),本題中求△ABE≌△ABG即AG=AE=10是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,點E是AB邊上一點,AE=BC,DE⊥EC,取DC的中點F,連接AF、BF.
(1)求證:AD=BE;
(2)試判斷△ABF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60度.以AD為邊在直角梯形精英家教網(wǎng)ABCD外作等邊三角形ADF,點E是直角梯形ABCD內(nèi)一點,且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)延長FE交BC于點G,點G恰好是BC的中點,若AB=6,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直角梯形ABCD中,AD∥BC,∠BCD=90°,且CD=2AD,tan∠ABC=2.
(1)求證:BC=CD;
(2)在邊AB上找點E,連接CE,將△BCE繞點C順時針方向旋轉(zhuǎn)90°得到△DCF.連接EF,如果EF∥BC,試畫出符合條件的大致圖形,并求出AE:EB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•深圳二模)如圖,直角梯形ABCD中,∠DAB=90°,AB∥CD,AB=AD,∠ABC=60°.以AD為邊在直角梯形ABCD外作等邊三角形ADF,點E是直角梯形ABCD內(nèi)一點,且∠EAD=∠EDA=15°,連接EB、EF.
(1)求證:EB=EF;
(2)若EF=6,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,直角梯形ABCD中,AD∥BC,∠ABC=90°,以AB為直徑的⊙O切DC邊于E點,AD=3cm,BC=5cm.求⊙O的面積.

查看答案和解析>>

同步練習(xí)冊答案