【題目】已知二次函數的圖象如圖所示,給出以下結論:①a+b+c<0;②a-b+c<0;③b+2a<0;④abc>0,其中正確的個數是( )
A.1B.2C.3D.4
【答案】B
【解析】
①據當x=1時圖象在x軸下方,得出y<0,即a+b+c<0判斷即可;
②據當x=-1時圖象在x軸上方,得出y>0,即a-b+c>0判斷即可;
③據對稱軸<1,得出2a+b>0進行判斷;
④由圖象開口向上判斷出a>0,由對稱軸在y軸右側得出b<0,由拋物線與y軸交于負半軸,c<0判斷即可.
解:①當x=1時圖象在x軸下方時,y<0,
即a+b+c<0,①正確;
②當x=-1時圖象在x軸上方,y>0,
即a-b+c>0,②錯誤;
③由拋物線的開口向上知a>0,
∵<1,
∴2a+b>0,③錯誤;
④∵圖象開口向上,
∴a>0,
∵對稱軸在y軸右側
∴b<0,
∵拋物線與y軸交于負半軸,
∴c<0,
∴abc>0,④正確,
∴正確的結論有2個;
故選:B.
科目:初中數學 來源: 題型:
【題目】圖1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,
以下各層均比上一層多一個圓圈,一共堆了n 層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以
算出圖1中所有圓圈的個數為1+2+3+…+n=.
如果圖中的圓圈共有13層,請解決下列問題:
(1)我們自上往下,在每個圓圈中按圖3的方式填上一串連續(xù)的正整數1,2,3,4,……,則最底層最左
邊這個圓圈中的數是 ;
(2)我們自上往下,在每個圓圈中按圖4的方式填上一串連續(xù)的整數-23,-22,-21,-20,……,求
最底層最右邊圓圈內的數是_______;
(3)求圖4中所有圓圈中各數的絕對值之和.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把球放在長方體紙盒內,球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長是( )
A. 2cm B. 2.5cm C. 3cm D. 4cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學共有學生2000名,各年級男、女生人數如下表:
年級 | 六年級 | 七年級 | 八年級 | 九年級 |
男生 | 250 | z | 254 | 258 |
女生 | x | 244 | y | 252 |
若從全校學生中任意抽取一名,抽到六年級女生的概率是0.12;若將各年級的男、女學生人數制成扇形統(tǒng)計圖,八年級女生對應扇形的圓心角為44.28°.
(1)求x,y,z的值;
(2)求各年級女生的平均數;
(3)如果從八年級隨機抽取36名學生參加社會實踐活動,求抽到八年級某同學的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=8,過對角線AC中點O的直線分別交BC、AD邊于點E、F.
(1)求證:四邊形AECF是平行四邊形;
(2)當四邊形AECF是菱形時,求AF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀下列材料,并完成相應的任務.
在數學中,當問題的條件不夠時間,常添加輔助線構成新圖形,形成新關系,建立已知與未知的橋梁,從而把原問題轉化為易于解決的問題.在著名美籍匈牙利數學教波利亞所著的《數學的發(fā)現》一書中有這樣一個例子:試作一個三角形,使它的三邊長分別是各條中線長的三分之一,解決這個問題的步驟如下:
第一步,如圖1,己知的三條中線,和相交于點,則有.
下面是該結論的部分證明過程:
證明:如圖1,過點作的平分線,交的延長線于點,則.
又,
∴.
∴.
∵點是的中點,
∴.
……
第二步,同理可以證明:.
第三步,如圖2,取BM的中點,連接.則的三邊長分別是各條中線長的三分之一.
任務:(1)請在上面第一步中證明過程的基礎上完成對結論的證明;
(2)請完成第三步的結論的證明;
(3)請直接寫出圖2中與的面積比:_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,按以下步驟作圖:①以A為圓心,任意長為半徑作弧,分別交AB,AD于點M,N;②分別以M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點P;③作AP射線,交邊CD于點Q,若DQ=2QC,BC=3,則平行四邊形ABCD周長為________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com