【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O,交斜邊AC于點D,點E為OB的中點,連接CE并延長交⊙O于點F,點F恰好落在的中點,連接AF并延長與CB的延長線相交于點G,連接OF.
(1)求證:OF=BG;
(2)若AB=4,求DC的長.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)直接利用圓周角定理結合平行線的判定方法得出FO是△ABG的中位線,即可得出答案;
(2)首選得出△FOE≌△CBE(ASA),則BC=FO=AB=2,進而得出AC的長,再利用相似三角形的判定與性質得出DC的長.
試題解析:(1)證明:∵以Rt△ABC的直角邊AB為直徑作⊙O,點F恰好落在的中點,∴,∴∠AOF=∠BOF,∵∠ABC=∠ABG=90°,∴∠AOF=∠ABG,∴FO∥BG,∵AO=BO,∴FO是△ABG的中位線,∴FO=BG;
(2)解:在△FOE和△CBE中,∵∠FOE=∠CBE,EO=BE,∠OEF=∠CEB,∴△FOE≌△CBE(ASA),∴BC=FO=AB=2,∴AC==,連接DB,∵AB為⊙O直徑,∴∠ADB=90°,∴∠ADB=∠ABC,∵∠BCD=∠ACB,∴△BCD∽△ACB,∴,∴,解得:DC=.
科目:初中數學 來源: 題型:
【題目】已知:如圖,菱形ABCD中,對角線AC,BD相交于點O,且AC=12cm,BD=16cm.點P從點B出發(fā),沿BA方向勻速運動,速度為1cm/s;同時,直線EF從點D出發(fā),沿DB方向勻速運動,速度為1cm/s,EF⊥BD,且與AD,BD,CD分別交于點E,Q,F;當直線EF停止運動時,點P也停止運動.連接PF,設運動時間為t(s)(0<t<8).設四邊形APFE的面積為y(cm2),則下列圖象中,能表示y與t的函數關系的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料:
上課時李老師提出這樣一個問題:對于任意實數x,關于x的不等式x2﹣2x﹣1﹣a>0恒成立,求a的取值范圍.
小捷的思路是:原不等式等價于x2﹣2x﹣1>a,設函數y1=x2﹣2x﹣1,y2=a,畫出兩個函數的圖象的示意圖,于是原問題轉化為函數y1的圖象在y2的圖象上方時a的取值范圍.
請結合小捷的思路回答:
對于任意實數x,關于x的不等式x2﹣2x﹣1﹣a>0恒成立,則a的取值范圍是 .
參考小捷思考問題的方法,解決問題:
關于x的方程x﹣4=在0<a<4范圍內有兩個解,求a的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總人口x(單位:人)的函數圖象如圖所示,則下列說法正確的是( )
A.該村人均耕地面積隨總人口的增多而增多
B.當該村總人口為50人時,人均耕地面積為1公頃
C.若該村人均耕地面積為2公頃,則總人口有100人
D.該村人均耕地面積y與總人口x成正比例
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,以BC為直徑作⊙O,交AC于D.E為的中點,連接CE,BE,BE交AC于F.
(1)求證:AB=AF;
(2)若AB=3,BC=4,求CE的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com