【題目】某中學八年級(1)班去體育用品商店買一些籃球和排球,供班上同學陽光體育課間使用,共買了3個籃球和5個排球,花570元,并且每個排球比籃球便宜30元.

(1)求籃球和排球的單價各是多少嗎?

(2)商店里搞活動,有兩種套餐,套裝打折:五個籃球和五個排球為一套裝,套裝打八折;滿減活動:999100,1999200;兩種活動不重復參與,學校打算買15個籃球,13個排球作為獎品,請問如何安排更劃算?

【答案】(1) 籃球的單價是90元,排球的單價為60元 ;(2) 照套裝購買更劃算

【解析】

(1)設籃球的單價是x元,排球的單價為y元,根據(jù)題目中的等量關系列出方程組求解即可;

2)根據(jù)題意中的等量關系列出等式分別求出兩個套裝需要付款的總數(shù),比較大小即可.

解:(1)設籃球的單價是x元,排球的單價為y元,

根據(jù)題意得:

,

解得:

答:籃球的單價是90元,排球的單價為60元;

(2)按照套裝打折,

買15個籃球和15個排球需付款:15×90×0.8+15×60×0.8=1800(元),

按照套裝打折,

15個籃球需付款:15×90=1350(元),

13個排球需付款:13×60=780(元),

共需付款:1350+780﹣200=1930(元),

即按照套裝購買更劃算,

答:按照套裝購買更劃算.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點O和點B處各折一下,得到一條折線數(shù)軸.圖中點A表示﹣11,點B表示10,點C表示18,我們稱點A和點C在數(shù)軸上相距29個長度單位.動點P從點A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運動,從點O運動到點B期間速度變?yōu)樵瓉淼囊话,之后立刻恢復原速;同時,動點Q從點C出發(fā),以1單位/秒的速度沿著數(shù)軸的負方向運動,從點B運動到點O期間速度變?yōu)樵瓉淼膬杀叮笠擦⒖袒謴驮伲O運動的時間為t秒.

問:(1)動點P從點A運動至C點需要多少時間?

(2)P、Q兩點相遇時,求出相遇點M所對應的數(shù)是多少;

(3)求當t為何值時,P、O兩點在數(shù)軸上相距的長度與Q、B兩點在數(shù)軸上相距的長度相等.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點O為坐標原點,點A、B、C的坐標分別為A( ,0)、B(3 ,0)、C(0,5),點D在第一象限內(nèi),且∠ADB=60°,則線段CD的長的最小值是(
A.2 ﹣2
B.2
C.2
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有兩根直桿隔河相對,桿CD30m,桿AB20m,兩桿相距50m.現(xiàn)兩桿上各有一只魚鷹,它們同時看到兩桿之間的河面上E處浮起一條小魚,于是以同樣的速度同時飛下來奪魚,結果兩只魚鷹同時到達,叼住小魚.問兩桿底部距魚的距離各是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小林沿著筆直的公路靠右勻速行走,發(fā)現(xiàn)每隔5分鐘從背后駛過一輛101路公交車,每隔3分鐘從迎面駛來一輛101路公交車.假設每個每輛101路公交車行駛速度相同,而且101路公交車總站每隔固定時間發(fā)一輛車,那么發(fā)車間隔的時間是( 。

A. 3分鐘 B. 3.75分鐘 C. 4分鐘 D. 5分鐘

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】細心觀察下圖,認真分析各式,然后解答問題.

()2+1=2,S1;

()2+1=3,S2;

()2+1=4,S3.

(1)請用含n(n是正整數(shù))的等式表示上述式子的變化規(guī)律;

(2)推算出OA10的長;

(3)求出S12+S22+S32+S102的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AE⊥BC于點E,延長BC至點F使CF=BE,連結AF,DE,DF.

(1)求證:四邊形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上點A、點B對應的數(shù)分別為、6

、B兩點的距離是______

時,求出數(shù)軸上點C表示的有理數(shù);

一元一次方解應用題:點D以每秒4個單位長度的速度從點B出發(fā)沿數(shù)軸向左運動,點E以每秒3個單位長度的速度從點A出發(fā)沿數(shù)軸向右運動,點F從原點出發(fā)沿數(shù)軸運動,點D、點E、點F同時出發(fā),t秒后點D、點E相距1個單位長度,此時點D、點F重合,求出點F的速度及方向.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=2cm,C為 的中點,D、E分別是OA、OB的中點,則圖中陰影部分的面積為cm2

查看答案和解析>>

同步練習冊答案