【題目】在四邊形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E為AB上一點(diǎn),AE=AD,且BF∥CD,AF⊥CE的延長(zhǎng)線于F.連接DE交對(duì)角線AC于H.下列結(jié)論:①△ACD≌ACE;②AC垂直平分ED;③CE=2BF;④CE平分∠ACB.其中結(jié)論正確的是________.(填序號(hào))
【答案】①②③④
【解析】
由已知條件可直接證得△ACD≌△ACE;由三角形全等的性質(zhì)可得CD=CE,又因?yàn)?/span>AD=AE所以AC是DE的垂直平分線即AC垂直平分ED;延長(zhǎng)AF,CB相交于點(diǎn)G,證出△ABG≌△CBE,則AG=CE=CD,再證出AG=2BF即可得出③正確;取CE的中點(diǎn)I連接BI,可得CE=2BI,再證明BF=BI,再利用三角形的外角性質(zhì)和平行線的性質(zhì)問(wèn)題④可得證.
解:①∵AD∥BC,∠ABC=90°,
∴∠BAD=90°.
∵AB=CB,
∴∠BAC=45°,
∴∠DAC=45°.
又∵AC=AC,AE=AD,
∴△AEC≌△ADC.
故①正確.
②∵△AEC≌△ADC,
∴DC=CE.
又∵AD=AE,
∴AC是DE的垂直平分線.
即AC垂直平分ED.
故②正確.
③延長(zhǎng)AF,CB相交于點(diǎn)G,則∠ABG=∠ABC=90°,
∵∠BEC+∠BCE=90°,
又∵AF⊥CE,
∴∠AEF+∠BAG=90°,
∵∠BEC=∠AEF,
∴∠BCE=∠BAG,
又∵AB=BC,
∴△ABG≌△CBE,
∴AG=CE=CD,
又∵AD//BC,
∴∠G=∠DCG,
∵BF//CD,
∴∠DCG=∠FBG,
∴∠G=∠FBG,
∴BF=FG.
又∵∠ABG=90°,
∴AG=2BF.
即CE=2BF.
故③正確;
④取CE的中點(diǎn)I,連接BI,則BI=CI=EI.
∴∠CBI=∠BCI,
∴∠BIF=2∠BCI.
∵CE=2BF,
∴BF=BI,
∴∠BFI=∠BIF=2∠BCI.
∵BF//CD,
∴∠BFI=∠DCE,
∴∠BCI=∠DCE=∠ACE,
∴CE平分∠ACB.
故④正確.
故答案為:①②③④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線和直線相交于點(diǎn),,垂足為,平分.
(1)若,求的度數(shù);
(2)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的布袋里有4個(gè)標(biāo)有1,2,3,4的小球,它們的形狀、大小完全相同.小明從布袋里隨機(jī)取出一個(gè)小球,記下數(shù)字為x,小紅在剩下的3個(gè)小球中隨機(jī)取出一個(gè)小球,記下數(shù)字為y,這樣確定了點(diǎn)Q的坐標(biāo)(x,y).
(1)畫樹狀圖或列表,寫出點(diǎn)Q所有可能的坐標(biāo);
(2)小明和小紅約定做一個(gè)游戲,其規(guī)則為:若x、y滿足xy>6則小明勝,若x、y滿足xy<6則小紅勝,這個(gè)游戲公平嗎?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角△ABC中,AC=10,S△ABC =25,∠BAC的平分線交BC于點(diǎn)D,點(diǎn)M,N分別是AD和AB上的動(dòng)點(diǎn),則BM+MN的最小值是( )
A. 4 B. C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在RT△ABC中,∠ACB=90°,∠B=35°,CD⊥AB,垂足為點(diǎn)D,
(1)求∠ACD的度數(shù);
(2)找出圖中相等的角,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過(guò)P作PF⊥AD交BC的延長(zhǎng)線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB=135°;②BF=BA;③PH=PD;④連接CP,CP平分∠ACB,其中正確的是( 。
A. ①②③ B. ①②④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】科技館是少年兒童節(jié)假日游玩的樂(lè)園.
如圖所示,圖中點(diǎn)的橫坐標(biāo)x表示科技館從8:30開門后經(jīng)過(guò)的時(shí)間(分鐘),縱坐標(biāo)y表示到達(dá)科技館的總?cè)藬?shù).圖中曲線對(duì)應(yīng)的函數(shù)解析式為y=,10:00之后來(lái)的游客較少可忽略不計(jì).
(1)請(qǐng)寫出圖中曲線對(duì)應(yīng)的函數(shù)解析式;
(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過(guò)684人,后來(lái)的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時(shí),館外等待的游客可全部進(jìn)入.請(qǐng)問(wèn)館外游客最多等待多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, AB=CB, BD=BE, ∠ABC=∠DBE=a.
(1)當(dāng)a=60°, 如圖①則,∠DPE的度數(shù)______________
(2)若△BDE繞點(diǎn)B旋轉(zhuǎn)一定角度,如圖②所示,求∠DPE(用a表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,,點(diǎn)、、分別在邊、、上,且,請(qǐng)你添加一個(gè)條件,使得與全等,這個(gè)條件可以是______________(只需寫出一個(gè))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com