【題目】如圖,A是數(shù)軸上表示-30的點(diǎn),B是數(shù)軸上表示10的點(diǎn),C是數(shù)軸上表示18的點(diǎn),點(diǎn)A,B,C在數(shù)軸上同時(shí)向數(shù)軸的正方向運(yùn)動(dòng),點(diǎn)A運(yùn)動(dòng)的速度是6個(gè)單位長度每秒,點(diǎn)B和C運(yùn)動(dòng)的速度是3個(gè)單位長度每秒.設(shè)三個(gè)點(diǎn)運(yùn)動(dòng)的時(shí)間為t秒(t≠5),設(shè)線段OA的中點(diǎn)為P,線段OB的中點(diǎn)為M,線段OC的中點(diǎn)為N,當(dāng)2PM-PN=2時(shí),t的值為_____

【答案】

【解析】當(dāng)AB,C三個(gè)點(diǎn)在數(shù)軸上同時(shí)向數(shù)軸正方向運(yùn)動(dòng)t秒時(shí),

A,B,C三個(gè)點(diǎn)在數(shù)軸上表示的數(shù)分別為:6t30,10+3t18+3t,

P,MN分別為OA,OB,OC的中點(diǎn),

P,M,N三個(gè)點(diǎn)在數(shù)軸上表示的數(shù)分別為: ,,,

MN左邊。

①若PM,N左邊,PM==201.5t,PN==241.5t.

2PMPN=2

2(201.5t)(241.5t)=2,

t=

②若PM,N之間,PM==20+1.5t,PN==241.5t.

2PMPN=2,

2(20+1.5t)(241.5t)=2,

t=

③若PM,N右邊,PM==20+1.5t,PN==24+1.5t.

2PMPN=2,

2(20+1.5t)(24+1.5t)=2,

t=12

但是此時(shí)PM=20+1.5t<0,所以此種情況不成立,

t=.

點(diǎn)睛: 此題主要考查了一元一次方程的應(yīng)用以及數(shù)軸上點(diǎn)的位置關(guān)系,根據(jù)P點(diǎn)位置的不同得出等式方程求出是解題關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中, , 平分 平分

求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下面直角坐標(biāo)系中,已知A0,a),Bb,0),Cbc)三點(diǎn),其中ab、c滿足關(guān)系式

1)求a、b、c的值;

2)如果在第二象限內(nèi)有一點(diǎn)Pm, ),請(qǐng)用含m的式子表示四邊形ABOP的面積;

3)在(2)的條件下,是否存在點(diǎn)P,使四邊形ABOP的面積為ABC的面積相等?若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)從M地到N地有一條普通公路,總路程為120km;有一條高速公路,總路程為126km.甲車和乙車同時(shí)從M地開往N地,甲車全程走普通公路,乙車先行駛了另一段普通公路,然后再上高速公路.假設(shè)兩車在普通公路和高速公路上分別保持勻速行駛,其中在普通公路上的行車速度為60km/h,在高速公路上的行車速度為100km/h.設(shè)兩車出發(fā)x h時(shí),距N地的路程為y km,圖中的線段AB與折線ACD分別表示甲車與乙車的yx之間的函數(shù)關(guān)系.

(1)填空:a b ;

(2)求線段ABCD所表示的yx之間的函數(shù)關(guān)系式;

(3)兩車在何時(shí)間段內(nèi)離N地的路程之差達(dá)到或超過30km?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩動(dòng)點(diǎn)分別從正方形ABCD的頂點(diǎn)A、C同時(shí)沿正方形的邊開始移動(dòng),甲點(diǎn)依順時(shí)針方向環(huán)行,乙點(diǎn)依逆時(shí)針方向環(huán)行.若甲的速度是乙的速度的3倍,則它們第2015次相遇在哪條邊上( )

A. AB B. BC C. CD D. DA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:-24x6y3÷=-4x2y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(a-1)2與|b+1|的值互為相反數(shù),則ab__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:28x4y2÷7x3y

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中

(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對(duì)稱點(diǎn)為M,連接AM,PM.

①依題意將圖2補(bǔ)全;

②小茹通過觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過程中,始終有PA=PM,小茹把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:要證明PA=PM,只需證△APM是等邊三角形;

想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;

想法3:將線段BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…

請(qǐng)你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案