【題目】如圖,已知對(duì)稱軸為直線的拋物線與軸交于、兩點(diǎn),與軸交于C點(diǎn),其中.
(1)求點(diǎn)B的坐標(biāo)及此拋物線的表達(dá)式;
(2)點(diǎn)D為y軸上一點(diǎn),若直線BD和直線BC的夾角為15,求線段CD的長度;
(3)設(shè)點(diǎn)為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),當(dāng)為直角三角形時(shí),求點(diǎn)的坐標(biāo).
【答案】(1),;(2)CD=或;(3)的坐標(biāo)為或或或.
【解析】
(1)將A、C坐標(biāo)代入拋物線,結(jié)合拋物線的對(duì)稱軸,解得a、b、c的值,求得拋物線解析式;
(2)求出直線BC的解析式為,得出∠CBA=45°再求出∠DBA=30°或∠DBA=60°,再求出DO即可;
(3)設(shè)點(diǎn)P的坐標(biāo),分別以B、C、P為直角頂點(diǎn),進(jìn)行分類討論,再運(yùn)用勾股定理得到方程式進(jìn)行求解.
解:(1)根據(jù)對(duì)稱軸x=-1,A(1,0),得出B為(-3,0)
依題意得:,解之得:,
∴拋物線的解析式為.
(2)∵對(duì)稱軸為,且拋物線經(jīng)過,∴
∴直線BC的解析式為. ∠CBA=45°
∵直線BD和直線BC的夾角為15, ∴∠DBA=30°或∠DBA=60°
在△BOD,,BO=3
∴DO=或,∴CD=或.
∴,,,
①若點(diǎn)為直角頂點(diǎn),則即:解之得:,
②若點(diǎn)為直角頂點(diǎn),則即:解之得:,
③若點(diǎn)為直角頂點(diǎn),則即:解之得:
,.
綜上所述的坐標(biāo)為或或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2016湖南省株洲市)某市對(duì)初二綜合素質(zhì)測(cè)評(píng)中的審美與藝術(shù)進(jìn)行考核,規(guī)定如下:考核綜合評(píng)價(jià)得分由測(cè)試成績(滿分100分)和平時(shí)成績(滿分100分)兩部分組成,其中測(cè)試成績占80%,平時(shí)成績占20%,并且當(dāng)綜合評(píng)價(jià)得分大于或等于80分時(shí),該生綜合評(píng)價(jià)為A等.
(1)孔明同學(xué)的測(cè)試成績和平時(shí)成績兩項(xiàng)得分之和為185分,而綜合評(píng)價(jià)得分為91分,則孔明同學(xué)測(cè)試成績和平時(shí)成績各得多少分?
(2)某同學(xué)測(cè)試成績?yōu)?/span>70分,他的綜合評(píng)價(jià)得分有可能達(dá)到A等嗎?為什么?
(3)如果一個(gè)同學(xué)綜合評(píng)價(jià)要達(dá)到A等,他的測(cè)試成績至少要多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】E-learning即為在線學(xué)習(xí),是一種新型的學(xué)習(xí)方式.某網(wǎng)站提供了A、B兩種在線學(xué)習(xí)的收費(fèi)方式.A種:在線學(xué)習(xí)10小時(shí)(包括10小時(shí))以內(nèi),收取費(fèi)用5元,超過10小時(shí)時(shí),在收取5元的基礎(chǔ)上,超過部分每小時(shí)收費(fèi)0.6元(不足1小時(shí)按1小時(shí)計(jì));B種:每月的收費(fèi)金額(元)與在線學(xué)習(xí)時(shí)間是(時(shí))之間的函數(shù)關(guān)系如圖所示.
(1)按照B種方式收費(fèi),當(dāng)時(shí),求關(guān)于的函數(shù)關(guān)系式.
(2)如果小明三月份在這個(gè)網(wǎng)站在線學(xué)習(xí),他按照A種方式支付了20元,那么在線學(xué)習(xí)的時(shí)間最多是多少小時(shí)?如果該月他按照B 種方式付費(fèi),那么他需要多付多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與x軸交于點(diǎn)A和B(3,0),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)若點(diǎn)M是拋物線上在x軸下方的動(dòng)點(diǎn),過M作MN∥y軸交直線BC于點(diǎn)N,求線段MN的最大值;
(3)E是拋物線對(duì)稱軸上一點(diǎn),F是拋物線上一點(diǎn),是否存在以A,B,E,F為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全區(qū)5000名初中畢業(yè)生的體重情況,隨機(jī)抽測(cè)了200名學(xué)生的體重,頻率分布如圖所示(每小組數(shù)據(jù)可含最小值,不含最大值),其中從左至右前四個(gè)小長方形的高依次為0.02、0.03、0.04、0.05,由此可估計(jì)全區(qū)初中畢業(yè)生的體重不小于60千克的學(xué)生人數(shù)約為___人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,聯(lián)結(jié)AP并延長AP交CD于F點(diǎn),
(1)求證:四邊形AECF為平行四邊形;
(2)如果PA=PC,聯(lián)結(jié)BP,求證:△APB△EPC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,,,,點(diǎn)是邊上一個(gè)動(dòng)點(diǎn)(不與、重合),以點(diǎn)為圓心,為半徑作,與射線交于點(diǎn);以點(diǎn)為圓心,為半徑作,設(shè).
(1)如圖,當(dāng)點(diǎn)與點(diǎn)重合時(shí),求的值;
(2)當(dāng)點(diǎn)在線段上,如果與的另一個(gè)交點(diǎn)在線段上時(shí),設(shè),試求與之間的函數(shù)解析式,并寫出的取值范圍;
(3)在點(diǎn)的運(yùn)動(dòng)的過程中,如果與線段只有一個(gè)公共點(diǎn),請(qǐng)直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,BD=2AD,E、F、G分別是OC、OD、AB的中點(diǎn),下列結(jié)論:①BE⊥AC;②EG=EF;③△EFG≌△GBE;④EA平分∠GEF;⑤四邊形BEFG是菱形.其中正確的個(gè)數(shù)是( 。
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)、、在直線上,點(diǎn)、、、在直線上,若,從如圖所示的位置出發(fā),沿直線向右勻速運(yùn)動(dòng),直到與重合.運(yùn)動(dòng)過程中與矩形重合部分的面積隨時(shí)間變化的圖象大致是( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com