【題目】小剛身高180cm,他站立在陽光下的影子長為90cm,他把手臂豎直舉起,此時(shí)影子長為115cm,那么小剛的手臂超出頭頂cm.
【答案】50
【解析】解:設(shè)手臂豎直舉起時(shí)總高度xm,則 = ,解得x=50cm. 所以答案是:50.
【考點(diǎn)精析】通過靈活運(yùn)用相似三角形的應(yīng)用和平行投影,掌握測高:測量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長成比例”的原理解決;測距:測量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解;太陽光線可以看成是平行光線,平行光線所形成的投影稱為平行投影;作物體的平行投影:由于平行投影的光線是平行的,而物體的頂端與影子的頂端確定的直線就是光線,故根據(jù)另一物體的頂端可作出其影子即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:
如圖①,在△ABC中,點(diǎn)D、E、F分別在邊AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度數(shù).請將下面的解答過程補(bǔ)充完整,并填空(理由或數(shù)學(xué)式):
解:∵DE∥BC( )
∴∠DEF= ( )
∵EF∥AB
∴ =∠ABC( )
∴∠DEF=∠ABC( )
∵∠ABC=65°
∴∠DEF=
應(yīng)用:
如圖②,在△ABC中,點(diǎn)D、E、F分別在邊AB、AC、BC的延長線上,且DE∥BC,EF∥AB,若∠ABC=β,則∠DEF的大小為 (用含β的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長線上的點(diǎn),連結(jié)EF,分別交AD、BC于點(diǎn)G、H.若∠1=∠2,∠A=∠C,試說明AD∥BC和AB∥CD.
請完成下面的推理過程,并填空(理由或數(shù)學(xué)式):
∵∠1=∠2( )
∠1=∠AGH( )
∴∠2=∠AGH( )
∴AD∥BC( )
∴∠ADE=∠C( )
∵∠A=∠C( )
∴∠ADE=∠A
∴AB∥CD( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,∠A=60°,AB=10cm,若點(diǎn)M 從點(diǎn) B 出發(fā)以 2cm/s 的速度向點(diǎn) A 運(yùn)動(dòng),點(diǎn) N 從點(diǎn) A 出發(fā)以 1cm/s 的速度向點(diǎn) C 運(yùn)動(dòng),設(shè) M、N 分別從點(diǎn) B、A 同時(shí)出發(fā),運(yùn)動(dòng)的時(shí)間為 ts.
(1)用含 t 的式子表示線段 AM、AN 的長;
(2)當(dāng) t 為何值時(shí),△AMN 是以 MN 為底邊的等腰三角形?
(3)當(dāng) t 為何值時(shí),MN∥BC?并求出此時(shí) CN 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,BE平分∠ABC,DE平分∠ADC,∠BAD=70°,∠BCD=40°,則∠BED的度數(shù)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB⊥BC于點(diǎn)B,DC⊥BC于點(diǎn)C,DE平分∠ADC交BC于點(diǎn)E,點(diǎn)F為線段CD延長線上一點(diǎn),∠BAF=∠EDF.
(1)求證:∠DAF=∠F;
(2)在不添加任何輔助線的情況下,請直接寫出所有與∠CED互余的角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC面積為1,第一次操作:分別延長AB,BC,CA至點(diǎn)A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,順次連接A1,B1,C1,得到△A1B1C1.第二次操作:分別延長A1B1,B1C1,C1A1至點(diǎn)A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,順次連接A2,B2,C2,得到△A2B2C2,那么△A2B2C2的面積是( )
A. 7 B. 14 C. 49 D. 50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空,完成下面題目的解答,如圖,直線AB、CD被直線EF所截,H為CD與EF的交點(diǎn),∠1=,∠2=,GH⊥CD,垂足為H.
解:因?yàn)镚H⊥CD(已知),
所以∠2+∠3= (垂直的定義).
因?yàn)椤?=(已知),
所以∠3==.
所以∠3=∠4=( ),
又因?yàn)椤?=(已知),
所以∠1=∠4,
所以AB∥ ( ).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com