.如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當x任取一值時,x對應的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當x=1時,y1=0,y2=4,y1<y2,此時M="0." 下列判斷:
①當x>0時,y1>y2
②當x<0時,x值越大,M值越;
③使得M大于2的x值不存在;
④使得M=1的x值是.其中正確的是( )
A.①②B.①④C.②③ D.③④
D.

試題分析:若y1=y2,記M=y1=y2.首先求得拋物線與直線的交點坐標,利用圖象可得當x<-1時,利用函數(shù)圖象可以得出y2>y1;當-1<x<0時,y1>y2;當x>0時,利用函數(shù)圖象可以得出y2>y1;然后根據(jù)當x任取一值時,x對應的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;即可求得答案.
∵當y1=y2時,即-2x2+2=2x+2時,解得:x=0或x=-1,
∴當x<-1時,利用函數(shù)圖象可以得出y2>y1;當-1<x<0時,y1>y2;當x>0時,利用函數(shù)圖象可以得出y2>y1;
∴①錯誤;
∵拋物線y1=-2x2+2,直線y2=2x+2,當x任取一值時,x對應的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;
∴當x<0時,根據(jù)函數(shù)圖象可以得出x值越大,M值越大;
∴②錯誤;
∵拋物線y1=-2x2+2,直線y2=2x+2,與y軸交點坐標為:(0,2),當x=0時,M=2,拋物線y1=-2x2+2,最大值為2,故M大于2的x值不存在;
∴使得M大于2的x值不存在,
∴③正確;
∵如圖:當-1<x<0時,y1>y2;
∴使得M=1時,y2=2x+2=1,解得:x=-
當x>0時,y2>y1
使得M=1時,即y1=-2x2+2=1,解得:x1=,x2=-(舍去),
∴使得M=1的x值是-
∴④正確;
故選D.
考點: 二次函數(shù)綜合題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=-與y軸交于(0,3),
⑴求m的值;
⑵求拋物線與x軸的交點坐標及頂點坐標;
⑶當x取何值時,拋物線在x軸上方?
⑷當x取何值時,y隨x的增大而增大?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線(b,c是常數(shù),且c<0)與軸分別交于點A、B(點A位于點B的左側(cè)),與軸的負半軸交于點C,點A的坐標為(-1,0).

(1)請直接寫出點OA的長度;
(2)若常數(shù)b,c滿足關系式:.求拋物線的解析式.
(3)在(2)的條件下,點P是軸下方拋物線上的動點,連接PB、PC.設△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有多少個(直接寫出結(jié)果)?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線經(jīng)過點A(4,0),B(2,2),連結(jié)OB,AB.

(1)求、的值;
(2)求證:△OAB是等腰直角三角形;
(3)將△OAB繞點O按順時針方向旋轉(zhuǎn)l35°得到△OA′B′,寫出A′B′的中點P的出標.試判斷點P是否在此拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

二次函數(shù)圖像的頂點坐標是(    )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

一小球被拋出后,距離地面的高度h(米)和飛行時間t(秒)滿足下列函數(shù)關系式:,則小球距離地面的最大高度是
A.1米B.5米C.6米D.7米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若二次函數(shù)y=x2-6x+c的圖象過A(-1,y1)、B(2,y2)、C(3+,y3)三點,則y1、y2、y3的大小關系正確的是(    )
A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

二次函數(shù) (a≠0)中的自變量x與函數(shù)值y的部分對應值如下表:
x


-1

0

1


y


-2

-2

0


的解為    

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

兩個正方形的周長和是10,如果其中一個正方形的邊長為,則這兩個正方形的面積的和S關于的函數(shù)關系式為
A.B.
C.D.

查看答案和解析>>

同步練習冊答案