【題目】一次函數(shù)y=﹣x+1(0≤x≤10)與反比例函數(shù)y= (﹣10≤x<0)在同一平面直角坐標(biāo)系中的圖象如圖所示,點(x1 , y1),(x2 , y2)是圖象上兩個不同的點,若y1=y2 , 則x1+x2的取值范圍是( )

A.﹣ ≤x≤1
B.﹣ ≤x≤
C.﹣ ≤x≤
D.1≤x≤

【答案】B
【解析】當(dāng)x=﹣10時,y= =﹣ ;

當(dāng)x=10時,y=﹣x+1=﹣9,

∴﹣9≤y1=y2≤﹣

設(shè)x1<x2,則y2=﹣x2+1、y1= ,

∴x2=1﹣y2,x1= ,

∴x1+x2=1﹣y2+

設(shè)x=1﹣y+ (﹣9≤y≤﹣ ),﹣9≤ym<yn≤﹣ ,

則xn﹣xm=ym﹣yn+ =(ym﹣yn)(1+ )<0,

∴x=1﹣y+ 中x值隨y值的增大而減小,

∴1﹣(﹣ )﹣10=﹣ ≤x≤1﹣(﹣9)﹣ =

所以答案是:B.

【考點精析】根據(jù)題目的已知條件,利用一次函數(shù)的性質(zhì)和反比例函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時,y隨x的增大而增大(2)當(dāng)k<0時,y隨x的增大而減;性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的面積為1,則以相鄰兩邊中點連線EF為邊的正方形EFGH的周長為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線直線,垂足為,如圖放置,過點交直線于點,在內(nèi)取一點,連接,

1)若,,則_______

2)若,,則_______°.(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某武警部隊在一次地震搶險救災(zāi)行動中,探險隊員在相距4米的水平地面A,B兩處均探測出建筑物下方C處有生命跡象,已知在A處測得探測線與地面的夾角為30°,在B處測得探測線與地面的夾角為60°,求該生命跡象C處與地面的距離.(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,△ABC是等邊三角形,D、E分別為邊BC和AC上的點,且BD=CE,過D作BE的平行線,過E作BC的平行線,它們交于點F,連接AF.

(1)求證:△ABE≌△CAD;

(2)試判斷△ADF的形狀,并說明理由;

(3)若將D、E分別移為邊CB的延長線和AC的延長線上的點,其它條件不變(如圖②),則△ADF的形狀是否改變,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀并完成下列證明:如圖,ABCD,∠B55°,∠D125°,求證:BCDE

證明:ABCD(已知),

∴∠C=∠B ),又∵∠B55° ),

∴∠C=______°(等量代換),

∵∠D125° ),

BCDE ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在網(wǎng)格中,每個小正方形的邊長均為1個單位長度,我們將小正方形的頂點叫做格點,線段AB的端點均在格點上.

(1)將線段AB向右平移3個單位長度,得到線段A′B′,畫出平移后的線段并連接AB′和A′B,兩線段相交于點O;
(2)求證:△AOB≌△B′OA′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名工人同時加工同一種零件,現(xiàn)根據(jù)兩人7天產(chǎn)品中每天出現(xiàn)的次品數(shù)情況繪制成如下不完整的統(tǒng)計圖和表,依據(jù)圖、表信息,解答下列問題:

相關(guān)統(tǒng)計量表:

量數(shù)

眾數(shù)

中位數(shù)

平均數(shù)

方差

   

   

2

1

1

1

次品數(shù)量統(tǒng)計表:

天數(shù)

1

2

3

4

5

6

7

2

2

0

3

1

2

4

1

0

2

1

1

0

   

(1)補全圖、表.

(2)判斷誰出現(xiàn)次品的波動小.

(3)估計乙加工該種零件30天出現(xiàn)次品多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點D,E,F(xiàn)分別是AB,BC,CA的中點,AH是邊BC上的高.

(1)求證:四邊形ADEF是平行四邊形;

(2)求證:DHF=DEF.

查看答案和解析>>

同步練習(xí)冊答案