四邊形ABCD的對角線相交于點O,下列條件不能判定它是矩形的是


  1. A.
    AB=CD,AB∥CD,∠BAD=90°
  2. B.
    AO=CO,BO=DO,AC=BD
  3. C.
    ∠BAD=∠ABC=90°,∠BCD+∠ADC=180°
  4. D.
    ∠BAD=∠BCD,∠ABC=∠ADC=90°
C
分析:矩形的判定定理有:
(1)有一個角是直角的平行四邊形是矩形.
(2)有三個角是直角的四邊形是矩形.
(3)對角線互相平分且相等的四邊形是矩形.據(jù)此判斷.
解答:A、一個角為直角的平行四邊形為矩形,故A正確.
B、矩形的對角線平分且相等,故B正確.
C、∠BCD+∠ADC=180°,但∠BCD不一定與∠ADC相等,根據(jù)矩形的判定定理,故C不正確.
D、因為∠BAD=∠BCD,故AB∥CD,又因為,∠ABC=∠ADC=90°,根據(jù)矩形的判定(有一個角是直角的平行四邊形是矩形),故D正確.
故選C.
點評:本題考查的是矩形的判定定理,但考生應(yīng)注意的是由矩形的判定引申出來的各圖形的判定.難度一般.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

定義:到凸四邊形一組對邊距離相等,到另一組對邊距離也相等的點叫凸四邊形的準(zhǔn)內(nèi)心.如圖1,PH=PJ,PI=PG,則點P就是四邊形ABCD的準(zhǔn)內(nèi)心.

(1)如圖2,∠AFD與∠DEC的角平分線FP,EP相交于點P.求證:點P是四邊形ABCD的準(zhǔn)內(nèi)心.
(2)分別畫出圖3平行四邊形和圖4梯形的準(zhǔn)內(nèi)心.(作圖工具不限,不寫作法,但要有必要的說明)
(3)同樣,我們定義:到凸四邊形一組對角頂點的距離相等,到另一組對角頂點的距離也相等的點叫凸四邊形的準(zhǔn)外心.若QA=QC,QB=QD,則點Q就是四邊形ABCD的準(zhǔn)外心.那么你認(rèn)為Q是
AC的中垂線
AC的中垂線
BD的中垂線
BD的中垂線
的交點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,EF過平行四邊形ABCD的對角形的交點O,交AD于點E,交BC于點F,已知AB=5,BC=6,OE=2,那么四邊形EFCD的周長是
15
15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1+1輕巧奪冠·優(yōu)化訓(xùn)練·八年級數(shù)學(xué)下 題型:013

若四邊形ABCD的對角∠BAD與∠BCD的角平分線互相平行,則∠B與∠D的關(guān)系為

[  ]

A.∠B+∠D=180°

B.∠B=∠D

C.∠B>∠D

D.∠B<∠D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,EF過平行四邊形ABCD的對角形的交點O,交AD于點E,交BC于點F,已知AB=5,BC=6,OE=2,那么四邊形EFCD的周長是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:單選題

若四邊形ABCD的對角∠BAD與∠BCD的角平分線互相平行,則∠B與∠D的關(guān)系為


  1. A.
    ∠B+∠D=180°
  2. B.
    ∠B=∠D
  3. C.
    ∠B>∠D
  4. D.
    ∠B<∠D

查看答案和解析>>

同步練習(xí)冊答案