如圖,在直角坐標(biāo)系中,半徑為1的⊙A圓心與原點O重合,直線l分別交x軸、y軸于點B、C,若點B的坐標(biāo)為(6,0),tan∠ABC=.
(1)若點P是⊙A上的動點,求P到直線BC的最小距離,并求此時點P的坐標(biāo);
(2)若點A從原點O出發(fā),以1個單位/秒的速度沿著線路OB→BC→CO運動,回到點O停止運動,⊙A隨著點A的運動而移動.設(shè)點A運動的時間為t.
①求⊙A在整個運動過程中與坐標(biāo)軸相切時t的取值;
②求⊙A在整個運動過程中所掃過的圖形的面積為 .
(1),最小距離為3.8;(2)①1、、、、、23;②42+
【解析】
試題分析:(1)利用點B的坐標(biāo)為(6,0)且tan∠ABC=,即可得出C點坐標(biāo),進而利用△OPH∽△CBO,求出P點坐標(biāo)即可;
(2)①利用⊙A在整個運動過程中所掃過的面積=矩形DROC面積+矩形OYHB面積+矩形BGFC面積+△ABC面積+一個圓的面積-△LSK面積,求出即可;
②利用相似三角形的判定與性質(zhì)得出t的值即可,注意利用數(shù)形結(jié)合得出.
(1)∵點B的坐標(biāo)為(6,0)且tan∠ABC=
∴AC=8,
故C點坐標(biāo)為:C(0,8),
∴BC=10,
過O作OG⊥BC于G,則OG與⊙A的交點即為所求點P.過P作PH⊥x軸于H,
∵PH⊥AB,
∴∠OHP=90°,
∵∠POH+∠COP=90°,∠POC+∠OCG=90°,
∴∠POH=∠OCG,
又∵∠COB=90°,
∴△OPH∽△CBO,
可得,
∴;
(2)①如圖所示:⊙A與△OBC的三邊相切有6種不同的情況,
當(dāng)⊙O2與BC相切于點N,則O2N⊥BC,
∵∠OBC=∠O2BN,∠O2NB=∠COB=90°,
∴△O2NB∽△COB,
解得
則,則t的值為秒,
同理可得出:O3,O4,O5的位置,即可得出時間t的值,
故t=1、、、、、23;
②如圖2所示:當(dāng)圓分別在O,B,C位置時,作出公切線DR,YH,F(xiàn)G,PW,切點分別為:D,R,H,G,F(xiàn),P,W
連接CD,CF,BG,過點K作KX⊥BC于點X,PW交AB于點U,
∵PU∥OB,
∴∠OBC=∠KUX,
∵∠KXU=∠COB=90°,
∴△COB∽△KXU,
∵PU∥BO,
∴△CPU∽△COB,
同理可得出:△LSK∽△COB,
解得:LS=4,
則∠CDR=∠CFG=∠BGF=∠BHY=∠AYH=90°,
故⊙A在整個運動過程中所掃過的面積
=矩形DROC面積+矩形OYHB面積+矩形BGFC面積+△ABC面積+一個圓的面積-△LSK面積,
=42+.
考點:圓的綜合題
點評:圓的綜合題是初中數(shù)學(xué)的重點和難點,是中考的熱點,尤其在壓軸題中極為常見,要特別注意.
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
PP′ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
6 |
x |
3 |
2 |
6 |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com