【題目】某人駕車(chē)從鄉(xiāng)村進(jìn)城.各時(shí)間段的行駛速度如圖所示.當(dāng)時(shí),其行駛路程與時(shí)間之間的函數(shù)表達(dá)式是________,當(dāng)時(shí),其行駛路程與時(shí)間之間的函數(shù)表達(dá)式是________,當(dāng)時(shí),其行駛路程與時(shí)間之間的函數(shù)表達(dá)式是________.
【答案】, ,
【解析】
觀察函數(shù)圖象,可得函數(shù)解析式.
解:觀察圖象,得
當(dāng)0≤t<1時(shí),則其行駛路程S與時(shí)間t的函數(shù)關(guān)系式是 S=40t,
當(dāng)1≤t<2時(shí),則其行駛路程S與時(shí)間t的函數(shù)關(guān)系式是 S=80(t-1)+40,化簡(jiǎn),得S=80t-40,
當(dāng)2≤t<3時(shí),則其行駛路程S與時(shí)間t的函數(shù)關(guān)系式是 S=30(t-2)+120=30t+60,化簡(jiǎn),得S=30t+60,
故答案為:S=40t,S=80t-40,S=30t+60.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義一種“十位上的數(shù)字比個(gè)位、百位上的數(shù)字都要小”的三位數(shù)叫做“V數(shù)”如“947”就是一個(gè)“V數(shù)”.若十位上的數(shù)字為2,則從1,3,4,5中任選兩數(shù),能與2組成“V數(shù)”的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一種長(zhǎng)方形餐桌的四周可坐6人用餐,現(xiàn)把若干張這樣的餐桌按如圖方式進(jìn)行拼接.
(1)若把4張、8張這樣的餐桌拼接起來(lái),四周分別可坐多少人?
(2)若用餐的人數(shù)有90人,則這樣的餐桌需要多少?gòu)垼?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=8,點(diǎn)E是AD上的一點(diǎn),有AE=4,BE的垂直平分線交BC的延長(zhǎng)線于點(diǎn)F,連結(jié)EF交CD于點(diǎn)G.若G是CD的中點(diǎn),則BC的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將Rt△ABC繞直角頂點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C,連接AA′,若∠1=20°,則∠B的度數(shù)是( )
A.70°
B.65°
C.60°
D.55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C、D在⊙O上,點(diǎn)E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線;
(3)當(dāng)BC=4時(shí),求劣弧AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y= (x>0)的圖象與邊長(zhǎng)為5的等邊△AOB的邊OA,AB分別相交于C,D兩點(diǎn),若OC=2BD,則實(shí)數(shù)k的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB兩個(gè)端點(diǎn)的坐標(biāo)分別為A(6,6),B(8,2),以原點(diǎn)O為位似中心,在第一象限內(nèi)將線段AB縮小為原來(lái)的 后得到線段CD,則點(diǎn)B的對(duì)應(yīng)點(diǎn)D的坐標(biāo)為( )
A.(3,3)
B.(1,4)
C.(3,1)
D.(4,1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,D在邊BC上,以A為圓心,AD長(zhǎng)為半徑畫(huà)圓弧,交邊BC的另一點(diǎn)E,交邊AC于F,連接AE,EF.
(1)求證:△ABD≌△ACE;
(2)若∠ADB=3∠CEF,請(qǐng)判斷EF與AB有怎樣的位置關(guān)系?并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com