【題目】已知,ABC中,ACB=90°,AC=BC,點(diǎn)E是BC上一點(diǎn),連接AE.

(1)如圖1,當(dāng)∠BAE=15°,CE=時,求AB的長.

(2)如圖2,延長BC至D,使DC=BC,將線段AE繞點(diǎn)A順時針旋轉(zhuǎn)90°得線段AF,連接DF,過點(diǎn)B作BGBC,交FC的延長線于點(diǎn)G,求證:BG=BE.

【答案】(1)3 (2)證明見解析

【解析】分析:(1)、根據(jù)題意得出△ABC為等腰直角三角形,根據(jù)題意得出∠CAE=30°,從而求出AE的長度,然后根據(jù)Rt△ACE的性質(zhì)求出BC的長度,從而得出AB的長度;(2)、連接AD,線段AE繞點(diǎn)A順時針旋轉(zhuǎn)90°得線段AF,根據(jù)旋轉(zhuǎn)的性質(zhì)得出△ADF△ABE全等,從而證明△BCG△DCF全等,從而得出答案.

詳解:(1)∵∠ACB=90°,AC=BC,∴△ABC是等腰直角三角形,∴∠BAC=45°,∠BAE=15°,

∴∠CAE=30°,∵CE=,∴Rt△ACE中,AE=2CE=2,

由勾股定理可得,AC==3, ∴BC=3,

∴Rt△ABC中,由勾股定理可得,AB==3;

(2)如圖所示,連接AD,

線段AE繞點(diǎn)A順時針旋轉(zhuǎn)90°得線段AF,則AE=AF,∠EAF=90°, ∵AC⊥BD,DC=BC,

∴AD=AB,∠ABE=∠ADC=45°,∵DF⊥DC,∴∠ADF=45°=∠ABE,

∵∠AFD+∠AED=180°=∠AEB+∠AED, ∴∠AFD=∠AEB, ∴△ADF≌△ABE,

∴DF=BE, ∵BG⊥BC,∴∠CBG=∠CDF=90°, ∵BC=DC,∠BCG=∠DCF,

∴△BCG≌△DCF,∴DF=BG, ∴BG=BE.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校有兩個校區(qū):南校和北校,這兩個校區(qū)九年級學(xué)生各有300名,為了解這兩個校區(qū)九年級學(xué)生的英語單詞掌握情況,進(jìn)行了抽樣調(diào)查,過程如下:

①收集數(shù)據(jù),從南校和北校兩個校區(qū)的九年級各隨機(jī)抽取10名學(xué)生,進(jìn)行英語單詞測試,測試成績(百分制)如下:

南校 92 100 86 89 73 98 54 95 98 85

北校 100 100 94 83 74 86 75 100 73 75

②整理、描述數(shù)據(jù),按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):

成績x

人數(shù)

部門

 50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

 南校

 1

 0

1

3

5

 北校

 0

 0

 4

2

4

(說明:成績90分及以上為優(yōu)秀,80~89分分為良好,60~79分為合格,60分以下為不合格)

③分析數(shù)據(jù),對上述數(shù)據(jù)進(jìn)行分析,分別求出了兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:

校區(qū)

平均數(shù)

中位數(shù)

眾數(shù)

方差

南校

87

90.5

    

179.4

北校

86

   

   

121.6

④得出結(jié)論.

結(jié)合上述統(tǒng)計全過程,回答下列問題:

(1)補(bǔ)全③中的表格.

(2)請估計北校九年級學(xué)生英語單詞掌握優(yōu)秀的人數(shù).

(3)你認(rèn)為哪個校區(qū)的九年級學(xué)生英語單詞掌握得比較好?說明你的理由.(至少從兩個不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解七、八年級學(xué)生對防溺水安全知識的掌握情況,從七、八年級各隨機(jī)抽取50名學(xué)生進(jìn)行測試,并對成績(百分制)進(jìn)行整理、描述和分析.部分信息如下:

a.七年級成績頻數(shù)分布直方圖:

b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79

c.七、八年級成績的平均數(shù)、中位數(shù)如下:

年級

平均數(shù)

中位數(shù)

76.9

m

79.2

79.5

根據(jù)以上信息,回答下列問題:

1)在這次測試中,七年級在80分以上(含80分)的有   人;

2)表中m的值為   ;

3)在這次測試中,七年級學(xué)生甲與八年級學(xué)生乙的成績都是78分,請判斷兩位學(xué)生在各自年級的排名誰更靠前,并說明理由;

4)該校七年級學(xué)生有400人,假設(shè)全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年女排世界杯中,中國女排以11站全勝且只丟3局的成績成功衛(wèi)冕本屆世界杯冠軍.某校七年級為了弘揚(yáng)女排精神,組建了排球社團(tuán),通過測量同學(xué)們的身高(單位:cm),并繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中提供的信息,解答下列問題.

(1)填空:樣本容量為___,a=___;

(2)把頻數(shù)分布直方圖補(bǔ)充完整;

(3)若從該組隨機(jī)抽取1名學(xué)生,估計這名學(xué)生身高低于165cm的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明為了測量大樓AB的高度,他從點(diǎn)C出發(fā),沿著斜坡面CD走260米到點(diǎn)D處,測得大樓頂部點(diǎn)A的仰角為37°,大樓底部點(diǎn)B的俯角為45°,已知斜坡CD的坡度為i=1:2.4.則大樓AB的高度約為( 。┟祝

(參考書據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

A. 170 B. 175 C. 180 D. 190

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為了落實(shí)中央的“強(qiáng)基惠民工程”,計劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊單獨(dú)施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的15倍.如果由甲、乙隊先合做15天,那么余下的工程由甲隊單獨(dú)完成還需5天.

1)這項工程的規(guī)定時間是多少天?

2)已知甲隊每天的施工費(fèi)用為6500元,乙隊每天的施工費(fèi)用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費(fèi)用是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011?常州)如圖,DE⊙O的直徑,弦AB⊥CD,垂足為C,若AB=6,CE=1,則OC=  ,CD=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先閱讀,再解決問題.

閱讀:材料一配方法可用來解一元二次方程.例如,對于方程可先配方,然后再利用直接開平方法求解方程.其實(shí),配方還可以用它來解決很多問題.

材料二對于代數(shù)式,因?yàn)?/span>,所以,即有最小值,且當(dāng)時,取得最小值為

類似地,對于代數(shù)式,因?yàn)?/span>,所以,即有最大值,且當(dāng)時,取得最大值為

解答下列問題:

填空:當(dāng)________時,代數(shù)式有最小值為________

當(dāng)________時,代數(shù)式有最大值為________

試求代數(shù)式的最小值,并求出代數(shù)式取得最小值時的的值.

(要求寫出必要的運(yùn)算推理過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,ABC的頂點(diǎn)均在格點(diǎn)上,請按要求完成下列各題:

1)以原點(diǎn)O為對稱中心作ABC的中心對稱圖形,得到A1B1C1,請畫出A1B1C1,并直接寫出A1、B1、C1的坐標(biāo);

2)再將A1B1C1繞著點(diǎn)A1順時針旋轉(zhuǎn)90°,得到A1B2C2,請畫出A1B2C2,并直接寫出點(diǎn)B2、C2的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案