【題目】計算:

1|3|+(﹣12016×(π3.140﹣(2+23

2)利用乘法公式計算:201822017×2019

3)已知2a=34b=5,8c=7,求8a+c2b的值.

4)已知x25x=14,求(x1)(2x1)﹣(x+12+1的值.

【答案】1;(21;(3;(415

【解析】

先算絕對值、乘方、零指數(shù)冪、負整數(shù)指數(shù)冪,然后再進行加減法運算即可求解;

根據(jù)平方差公式計算即可求解;

變形為,再代入計算即可求解;

先根據(jù)多項式的乘法,完全平方公式展開,再合并同類項,再整體代入計算即可求解.

(1)原式=3+1×193+19;

(2)原式=20182(20181)×(2018+1)

=2018220182+1

=1;

(3)2a=3,4b=5,8c=7,

8a+c2b =(2a)3×8c÷(4b)3

=27×7÷125

;

(4)x25x=14

(x1)(2x1)(x+1)2+1

=2x23x+1x22x1+1

=x25x+1

=14+1

=15

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形ABCD的邊長為4,點E,F(xiàn)分別在邊BC、CD上,∠EAF=45°,若AEAF= ,則EF的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AB為⊙O的直徑,CD為⊙O的弦,CD∥AB,過點B的切線與射線AD交于點M,連接AC,BD.

(1)如圖l,求證:AC=BD;
(2)如圖2,延長AC、BD交于點F,作直徑DE,連接AE、CE,CE與AB交于點N,求證:∠AFB=2∠AEN;
(3)如圖3,在(2)的條件下,過點M作MQ⊥AF于點Q,若MQ:QC=3:2,NE=2,求QF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲乙兩人勻速從學校出發(fā),相約在某景點見面,甲于8:00出發(fā)5分鐘后,乙以 a/分的速度沿同一路線行走.設甲乙兩人相距s(米),甲行走的時間為t(分),st的關系示意圖一部分如圖所示.

根據(jù)圖中提供的信息回答下列問題:

1)甲行走的速度為______/分;

2)補齊圖象,并指出甲到達景點的時刻;

3)求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】同時拋擲兩枚質(zhì)地均勻的骰子,骰子的六個面分別刻有1到6的點數(shù),朝上的面的點數(shù)中,一個點數(shù)能被另一個點數(shù)整除的概率是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論:①ac>0;②2a+b>0;③y隨x的增大而增大;④a﹣b+c<0,其中正確的個數(shù)( )

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一個四邊形紙片ABCD,∠B=D=,把紙片按如圖所示折疊,使點B落在AD邊上的B′點,AE是折痕.

1)試判斷B′EDC的位置關系;并說明理由.

2)如果∠C=,求∠AEB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在矩形ABCD中,O是AC與BD的交點,過點O的直線EF與AB,CD的延長線分別交于點E,F.

(1)求證:△BOE≌△DOF;

(2)當EF與AC滿足什么條件時,四邊形AECF是菱形?并證明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】等腰三角形一腰上的高與另一腰的夾角為50°,則該三角形的底角為____.

查看答案和解析>>

同步練習冊答案