【題目】如圖,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD,BC于點(diǎn)E,F(xiàn),垂足為點(diǎn)O.
(1)連接AF,CE,求證:四邊形AFCE為菱形;
(2)求菱形AFCE的邊長(zhǎng).
【答案】(1)證明見解析;(2)菱形AFCE的邊長(zhǎng)為5cm.
【解析】試題分析:(1)利用AAS或ASA證明△AOE≌△COF,可得OE=OF,又因OA=OC可判定四邊形AFCE是平行四邊形,又因AC⊥EF,根據(jù)菱形的判定即可得四邊形AFCE為菱形;(2)設(shè)菱形的邊長(zhǎng)為x,在Rt△ABF中,根據(jù)勾股定理可列方程(8-x)+4=x,解得x的值即可得菱形AFCE的邊長(zhǎng).
試題解析:(1)證明:∵四邊形ABCD是矩形
∴AD∥BC
∴∠CAD=∠ACB,∠AEF=∠CFE
∵EF垂直平分AC,垂足為O
∴△AOE≌△COF∴OE=OF
∵OA=OC∴四邊形AFCE為平行四邊形
又∵EF⊥AC∴四邊形AFCE為菱形
(2)設(shè)菱形的邊長(zhǎng)為x,由勾股定理得
(8-x)+4=x
解得x=5
所以菱形的邊長(zhǎng)為5㎝。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在⊙O中,直徑AB=6,BC是弦,∠ABC=30°,點(diǎn)P在BC上,點(diǎn)Q在⊙O上,且OP⊥PQ.
(1)如圖1,當(dāng)PQ∥AB時(shí),求PQ的長(zhǎng)度;
(2)如圖2,當(dāng)點(diǎn)P在BC上移動(dòng)時(shí),求PQ長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=90°,矩形ABCD的頂點(diǎn)A、B分別在邊OM,ON上,當(dāng)B在邊ON上運(yùn)動(dòng)時(shí),A隨之在OM上運(yùn)動(dòng),矩形ABCD的形狀保持不變,其中AB=2,BC=1,運(yùn)動(dòng)過程中,點(diǎn)D到點(diǎn)O的最大距離為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰△ABC中,AB=AC,∠A=36°,D是AC上的一點(diǎn),AD=BD,則以下結(jié)論中正確的有( )
①△BCD是等腰三角形;②點(diǎn)D是線段AC的黃金分割點(diǎn);③△BCD∽△ABC;④BD平分∠ABC.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形有一邊上的中線長(zhǎng)恰好等于這條邊的長(zhǎng),那么稱這個(gè)三角形為“有趣三角形”,這條中線稱為“有趣中線”.已知中,,一條直角邊為3,如果是“有趣三角形”,那么這個(gè)三角形“有趣中線”的長(zhǎng)等于________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空,把下面的推理過程補(bǔ)充完整,并在括號(hào)內(nèi)注明理由:
如圖,已知A、B、C、D在同一直線上,AE∥DF,AC=BD,∠E=∠F,求證:BE∥CF.
證明:∵AE∥DF(已知)
∴_________(兩直線平行,內(nèi)錯(cuò)角相等)
∵AC=BD(已知)
又∵AC=AB+BC,BD=BC+CD
∴________(等式的性質(zhì))
∵∠E=∠F(已知)
∴△ABE≌△DCF(___________)
∴∠ABE=∠DCF(_________________)
∵ABF+∠CBE=180°,∠DCF+∠BCF=180°
∴∠CBE=∠BCF(__________________)
∴BE∥CF(________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB分別與x軸、y軸交于點(diǎn)B、C,與直線OA交于點(diǎn)A.已知點(diǎn)A的坐標(biāo)為(﹣3,5),OC=4.
(1)分別求出直線AB、AO的解析式;
(2)求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是正△ABC內(nèi)一點(diǎn),OA=3,OB=4,OC=5,將線段BO以點(diǎn)B為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)60°得到線段BO′,下列結(jié)論:①△BO′A可以由△BOC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到;②點(diǎn)O與O′的距離為4;③∠AOB=150°;④S四邊形AOBO′=6+4;⑤S△AOC+S△AOB=6+,其中正確的結(jié)論是( 。
A. ①②③⑤ B. ①②③④ C. ①②④⑤ D. ①②③④⑤
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com