【題目】某工藝品廠生產(chǎn)一種汽車裝飾品,每件生產(chǎn)成本為20元,銷售價格在30元至80元之間(含30元和80元),銷售過程中的管理、倉儲、運輸?shù)雀鞣N費用(不含生產(chǎn)成本)總計50萬元,其銷售量y(萬個)與銷售價格(元/個)的函數(shù)關(guān)系如圖所示.

1)當(dāng)30≤x≤60時,求yx的函數(shù)關(guān)系式;

2)求出該廠生產(chǎn)銷售這種產(chǎn)品的純利潤w(萬元)與銷售價格x(元/個)的函數(shù)關(guān)系式;

3)銷售價格應(yīng)定為多少元時,獲得利潤最大,最大利潤是多少?

【答案】(1y=﹣0.1x+830≤x≤60)(2w=3)當(dāng)銷售價格定為50/件或80/件,獲得利潤最大,最大利潤是40萬元

【解析】試題分析:(1)由圖象知,當(dāng)30≤x≤60時,圖象過(60,2)和(305),運用待定系數(shù)法求解析式即可;

2)根據(jù)銷售產(chǎn)品的純利潤=銷售量×單個利潤,分30≤x≤6060x≤80列函數(shù)表達式;

3)當(dāng)30≤x≤60時,運用二次函數(shù)性質(zhì)解決,當(dāng)60x≤80時,運用反比例函數(shù)性質(zhì)解答.

試題解析:(1)當(dāng)x=60時,y==2,

當(dāng)30≤x≤60時,圖象過(602)和(30,5),

設(shè)y=kx+b,則

解得: ,

∴y=﹣0.1x+830≤x≤60);

2)根據(jù)題意,當(dāng)30≤x≤60時,W=x﹣20y﹣50=x﹣20)(﹣0.1x+8﹣50=+10x﹣210,

當(dāng)60x≤80時,W=x﹣20y﹣50=x﹣20﹣50=+70,

綜上所述:W=;

3)當(dāng)30≤x≤60時,W=+10x﹣210=,

當(dāng)x=50時, =40(萬元);

當(dāng)60x≤80時,W=+70,

∵﹣24000,Wx的增大而增大,

當(dāng)x=80時, =+70=40(萬元),

答:當(dāng)銷售價格定為50/件或80/件,獲得利潤最大,最大利潤是40萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列從左到右的變形中是因式分解的有(  )

①x2﹣y2﹣1=(x+y)(x﹣y)﹣1;

②x3+x=x(x2+1);

③(x﹣y)2=x2﹣2xy+y2

④x2﹣9y2=(x+3y)(x﹣3y).

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商品的標(biāo)價為150元,若以8折降價出售.相對于進貨價仍獲利20%,則該商品的進貨價為( 。

A.120B.110C.100D.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了選拔學(xué)生參加“漢字聽寫大賽”,對九年級一班、二班各10名學(xué)生進行漢字聽寫測試,計分采用10分制(得分均取整數(shù)),成績達到6分或6分以上為及格、達到9分或10分以上為優(yōu)秀.這20位同學(xué)的成績與統(tǒng)計數(shù)據(jù)如下表:

序號

1

2

3

4

5

6

7

8

9

10

平均數(shù)

中位數(shù)

眾數(shù)

方差

及格率

優(yōu)秀率

一班

5

8

8

9

8

10

10

8

5

5

7.6

8

a

3.82

70%

30%

二班

10

6

6

9

10

4

5

7

10

8

b

7.5

10

4.94

80%

40%

(1)在表中,a= ,b= ;

(2)有人說二班的及格率、優(yōu)秀率高于一班,所以二班的成績比一班好,但也有人堅持認為一班成績比二班好,請你給出支持一班成績好的兩條理由;

(3)若從這兩班獲滿分的同學(xué)中隨意抽1名同學(xué)參加“漢字聽寫大賽”,求參賽同學(xué)恰好是一班同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展“愛我海珠,創(chuàng)衛(wèi)同行”的活動,倡議學(xué)生利用雙休日在海珠濕地公園參加義務(wù)勞動,為了解同學(xué)們勞動情況,學(xué)校隨機調(diào)查了部分同學(xué)的勞動時間,并用得到的數(shù)據(jù)繪制了不完整的統(tǒng)計圖,根據(jù)圖中信息解答下列問題:

(1)將條形統(tǒng)計圖補充完整.
(2)抽查的學(xué)生勞動時間的眾數(shù)為 , 中位數(shù)為
(3)已知全校學(xué)生人數(shù)為1200人,請你估算該校學(xué)生參加義務(wù)勞動1小時的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2a2)2﹣a7÷(﹣a)3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=4,將△ADC沿AC折疊,點D落在點D′處,CD′與AB交于點F.
(1)求線段AF的長.
(2)求△AFC的面積.
(3)點P為線段AC(不含點A、C)上任意一點,PM⊥AB于點M,PN⊥CD′于點N,試求PM+PN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:-2m3+8m2-12m;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|﹣6|=

查看答案和解析>>

同步練習(xí)冊答案