【題目】如圖,△ABC△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E△ABC的斜邊BC的中點(diǎn)重合.將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q.

(1)如圖,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;

(2)如圖,當(dāng)點(diǎn)Q在線段CA的延長(zhǎng)線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=a,CQ=a 時(shí),P、Q兩點(diǎn)間的距離 (用含a的代數(shù)式表示).

【答案】(1)證明見解析(2)

【解析】試題分析:(1)由△ABC是等腰直角三角形,易得∠B=∠C=45°AB=AC,又由AP=AQEBC的中點(diǎn),利用SAS,可證得:△BPE≌△CQE;

2)由△ABC△DEF是兩個(gè)全等的等腰直角三角形,易得∠B=∠C=∠DEF=45°,然后利用三角形的外角的性質(zhì),即可得∠BEP=∠EQC,則可證得:△BPE∽△CEQ;根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得BE的長(zhǎng),即可得BC的長(zhǎng),繼而求得AQAP的長(zhǎng),利用勾股定理即可求得PQ兩點(diǎn)間的距離.

∵△ABC是等腰直角三角形,

∴∠B=∠C=45°,AB=AC

∵AP=AQ,

∴BP=CQ,

∵EBC的中點(diǎn),

∴BE=CE,

∴△BPE≌△CQESAS);

2)連接PQ

∵△ABC△DEF是兩個(gè)全等的等腰直角三角形,

∴∠B=∠C=∠DEF=45°

∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,

∴∠BEP+45°=∠EQC+45°,

∴∠BEP=∠EQC,

∴△BPE∽△CEQ

,

∵BP=aCQ=a,BE=CE

,

∴BE=CE=

∴BC=3,

∴AB=AC=BCsin45°=3a

∴AQ=CQ-AC=,PA=AB-BP=2a

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在正方形ABCD中,點(diǎn)MBC邊上一點(diǎn),BM=4MC,以M為直角頂點(diǎn)作等腰直角三角形MEF,點(diǎn)E在對(duì)角線BD上,點(diǎn)F在正方形外EFBC于點(diǎn)N,連CF,若BE=2,SCMF=3,則MN_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競(jìng)賽,為獎(jiǎng)勵(lì)在競(jìng)賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場(chǎng)一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購(gòu)買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.

(1)求足球和籃球的單價(jià)各是多少元?

(2)根據(jù)學(xué)校實(shí)際情況,需一次性購(gòu)買足球和籃球共20個(gè),但要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)1550元,學(xué)校最多可以購(gòu)買多少個(gè)足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,AB=AC=,cosC=

(1)動(dòng)手操作:利用尺規(guī)作以AC為直徑的⊙O,并標(biāo)出⊙O與AB的交點(diǎn)D,與BC的交點(diǎn)E(保留作圖痕跡,不寫作法);

(2)綜合應(yīng)用:在你所作的圖中,

①求證:弧DE=弧CE ;②求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形ABCD中,已知ADBC,ABDC,AD2BC4,延長(zhǎng)BCE,使CEAD

(1)寫出圖中所有與△DCE全等的三角形,并選擇其中一對(duì)說(shuō)明全等的理由;

(2)探究:當(dāng)梯形ABCD的高DF等于多少時(shí),對(duì)角線ACBD互相垂直?請(qǐng)回答并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形AMFN中,以AMBC邊上的高作等邊三角形ABC,將AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至點(diǎn)D,D點(diǎn)恰好落在NF上,連接BD,ACBD交于點(diǎn)E,連接CD.

(1)如圖1,求證:AMC≌△AND;

(2)如圖1,若DF=,求AE的長(zhǎng);

(3)如圖2,CDF繞點(diǎn)D順時(shí)針旋轉(zhuǎn),點(diǎn)C,F的對(duì)應(yīng)點(diǎn)分別為、.連接,點(diǎn)G的中點(diǎn),連接AG.試探索是否為定值,若是定值,則求出該值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小穎和同學(xué)一起去書店買書,他們先用60元買了一種科普書,又用60元買了一種文學(xué)書.科普書的價(jià)格比文學(xué)書高出一半,他們所買的科普書比所買的文學(xué)書少2.

(1)求他們買的科普書和文學(xué)書的價(jià)格各是多少元?

(2)學(xué)校某月開展讀書活動(dòng),班上同學(xué)讓小穎幫助購(gòu)買科普書和文學(xué)書共20本,且購(gòu)買總費(fèi)用不超過(guò)260元,求小穎至少購(gòu)買多少本文學(xué)書?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了美化生活環(huán)境,小蘭的爸爸要在院墻外的一塊空地上修建一個(gè)矩形花圃.如圖所示,矩形花圃的一邊利用長(zhǎng)10米的院墻,另外三條邊用籬笆圍成,籬笆的總長(zhǎng)為32米.設(shè)AB的長(zhǎng)為x米,矩形花圃的面積為y平方米.

(1)用含有x的代數(shù)式表示BC的長(zhǎng),BC=   

(2)求yx的函數(shù)關(guān)系式,寫出自變量x的取值范圍;

(3)當(dāng)x為何值時(shí),y有最大值?最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

(1)(x-5)2=16 (直接開平方法) (2)x2+5x=0 (因式分解法)

(3)x2-4x+1=0 (配方法) (4)x2+3x-4=0 (公式法)

查看答案和解析>>

同步練習(xí)冊(cè)答案