【題目】如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過A(﹣2,﹣1),B(1,3)兩點(diǎn),并且交x軸于點(diǎn)C,交y軸于點(diǎn)D.
(1)求一次函數(shù)的解析式;
(2)求點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)求△AOB的面積.
【答案】(1)y=x+;(2)D點(diǎn)坐標(biāo)為(0,),(3).
【解析】(1)先把A點(diǎn)和B點(diǎn)坐標(biāo)代入y=kx+b得到關(guān)于k、b的方程組,解方程組得到k、b的值,從而得到一次函數(shù)的解析式;
(2)令x=0,y=0,代入y=x+即可確定C、D點(diǎn)坐標(biāo);
(3)根據(jù)三角形面積公式和△AOB的面積=S△AOD+S△BOD進(jìn)行計(jì)算即可.
(1)把A(-2,-1),B(1,3)代入y=kx+b得
,
解得,.
所以一次函數(shù)解析式為y=x+;
(2)令y=0,則0=x+,解得x=-,
所以C點(diǎn)的坐標(biāo)為(-,0),
把x=0代入y=x+得y=,
所以D點(diǎn)坐標(biāo)為(0,),
(3)△AOB的面積=S△AOD+S△BOD
=××2+××1
=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天數(shù)學(xué)課上,老師講了整式的加減.放學(xué)后,小明回到家拿出課堂筆記,認(rèn)真地復(fù)習(xí)老師課堂上講的內(nèi)容,他突然發(fā)現(xiàn)一道題:
(﹣x2+3yx﹣y2)﹣(﹣x2+■xy﹣y2)=﹣x2﹣xy+■y2,其中兩處橫線地方的數(shù)字被鋼筆水弄污了,那么這兩處地方的數(shù)字之積應(yīng)是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,邊AB的垂直平分線MN交AC于點(diǎn)D,若△BCD的周長為24cm,BC=10cm,則AB的長為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)在平面直角坐標(biāo)系中,作出下列各點(diǎn),A(-3,4), B(-3,-2),O(0,0),并把各點(diǎn)連起來.
(2)畫出△ABO先向下平移2個(gè)單位,再向右平移4 個(gè)單位得到的圖形△A1B1o1,并直接寫出A1坐標(biāo)
(3) 直接寫出三角形ABO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點(diǎn)O,過點(diǎn)D作DE∥AC且DE=AC,連接AE交OD于點(diǎn)F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC=5,BC=6,AD是BC邊上的中線且AD=4,是AD上的動(dòng)點(diǎn),是AC邊上的動(dòng)點(diǎn),則的最小值是( ).
A. 6 B. 4 C. D. 不存在最小值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC的邊長為2,點(diǎn)D在射線CB上,點(diǎn)E在射線AC上,且AD=AE,∠EDC=15°,則線段CD=_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某公園的一角,∠AOB=90°,弧AB的半徑OA長是6m,C是OA的中點(diǎn),點(diǎn)D在弧AB上,CD//OB,則圖中休閑區(qū)(陰影部分)的面積是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com