(2010•賀州)如圖,在梯形ABCD中,AD∥BC,AC、BD是梯形的對(duì)角線(xiàn),且AC⊥BD,AD=3cm,BC=7cm,BD=6cm,則梯形ABCD的面積是
24
24
cm2
分析:過(guò)D作DE∥AC,交BC延長(zhǎng)線(xiàn)于E,過(guò)D作DF⊥BE于F,首先證明四邊形ADEC是平行四邊形,根據(jù)平行四邊形對(duì)邊相等可得到CE=AD,進(jìn)而可算出BE的長(zhǎng),再利用勾股定理算出DE的長(zhǎng),根據(jù)三角形的面積公式可以計(jì)算出梯形的高DF的長(zhǎng),最后利用梯形的面積公式可以計(jì)算出梯形ABCD面積.
解答:解:過(guò)D作DE∥AC,交BC延長(zhǎng)線(xiàn)于E,過(guò)D作DF⊥BE于F,

則四邊形ADEC是平行四邊形,
從而可得:AD=CE=3cm,
故可得:BE=3+7=10cm,
∵AC⊥BD,
∴∠BDE=90°,
∵AC∥DE,
∴∠BDE=90°,
在Rt△BDE中,DE=
BE2-BD2
=
100-36
=8cm,
故S△BDE=
1
2
×DB×DE=
1
2
×6×8=24,
即可得
1
2
×DF×BE=24,
解得:DF=
24
5
cm,
從而可得梯形ABCD面積為:
1
2
(AD+BC)×DF=
1
2
×10×
24
5
=24cm2
故答案為:24.
點(diǎn)評(píng):此題主要考查了梯形的面積計(jì)算,三角形的面積計(jì)算,以及平行四邊形的判定與性質(zhì),關(guān)鍵是求出梯形的高DF的長(zhǎng)度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•賀州)如圖是由一些大小相同的小正方體搭成的一個(gè)幾何體的三視圖,則這個(gè)幾何體的小正方體個(gè)數(shù)共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•賀州)如圖所示,OM是一堵高為2.5米的圍墻截面的高,小明在圍墻內(nèi)投籃,籃球從點(diǎn)A處投出,卻投到了籃球框外,正好打在了斜靠在圍墻上的一根竹竿CD的點(diǎn)B處,籃球經(jīng)過(guò)的路線(xiàn)是二次函數(shù)y=ax2+bx+4圖象的一部分.現(xiàn)以O(shè)為原點(diǎn),垂直于OM的水平線(xiàn)為x軸,OM所在的直線(xiàn)為y軸,建立如圖所示的平面直角坐標(biāo)系,如果籃球不被竹竿擋住,籃球?qū)⑼ㄟ^(guò)圍墻外的點(diǎn)E,點(diǎn)E的坐標(biāo)為(-3,
72
),點(diǎn)B和點(diǎn)E關(guān)于此二次函數(shù)圖象的對(duì)稱(chēng)軸對(duì)稱(chēng),若tan∠OCM=1.(圍墻的厚度忽略不計(jì),圍墻內(nèi)外水平面高度一樣)
(1)求竹竿CD所在的直線(xiàn)的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)在圍墻外距圍墻底部O點(diǎn)5.5米處有一個(gè)大池塘,如果籃球投出后不被竹竿擋住,籃球會(huì)不會(huì)直接落入池塘?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•賀州)如圖,△NKM與△ABC是兩塊完全相同的45°的三角尺,將△NKM的直角頂點(diǎn)M放在△ABC的斜邊AB的中點(diǎn)處,且MK經(jīng)過(guò)點(diǎn)C,設(shè)AC=a.則兩個(gè)三角尺的重疊部分△ACM的周長(zhǎng)是
(1+
2
)a
(1+
2
)a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•賀州)如圖,在△ABC中,DE∥BC,EF∥AB.
(1)求證:△ADE∽△EFC;
(2)如果AB=6,AD=4,求
SADES△EFC
的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案