如圖,△ABC中,AB=20,BC=21,AC=13,如果動點(diǎn)D以每秒2個(gè)單位長的速度從點(diǎn)B出發(fā)沿射線BA方向運(yùn)動,當(dāng)運(yùn)動到12秒時(shí)停止,直線DE∥BC,E為直線DE與直線CA的交點(diǎn),若點(diǎn)D運(yùn)動時(shí)間設(shè)為t秒.
(1)求當(dāng)點(diǎn)D在線段AB上時(shí)線段DE的長度(用含t的代表式表示);
(2)求出△DEC的面積S與時(shí)間t的函數(shù)關(guān)系式;
(3)S是否有最大值?若有,請求出最大值和相應(yīng)t的值;若沒有,請說明理由.
分析:(1)根據(jù)DE∥BC推出△ADE∽△ABC,得出
DE
21
=
20-2t
20
,求出即可;
(2)分為三種情況:①當(dāng)0<t<10時(shí),如圖1,過點(diǎn)D作DM⊥BC于點(diǎn)M,作AN⊥BC于點(diǎn)N,由勾股定理求出BN=16,AN=12,推出△BDM∽△BAN,得出比例式,求出DM=
6
5
t,根據(jù)S=
1
2
×DE×DM,代入求出S=-
63
50
t2+
63
5
t;②當(dāng)10<t≤12時(shí),根據(jù)△BAN∽△BDM得出比例式,代入求出DM=
6
5
t,根據(jù)△DEA∽△BAC汽車DE=
21
10
t-21,求出S=
63
50
t2-
63
5
t;③當(dāng)D與A重合時(shí),2t=20,求出t=10,S=S△ABC;
(3)求出三種情況的最大值即可.
解答:解:(1)根據(jù)題意得:BD=2t,
當(dāng)點(diǎn)D在線段AB上時(shí),AD=AB-BD=20-2t,
∵DE∥BC,
∴△ADE∽△ABC,
DE
BC
=
AD
AB
,
DE
21
=
20-2t
20

解得:DE=21-
21
10
t;

(2)①當(dāng)0<t<10時(shí),如圖1,過點(diǎn)D作DM⊥BC于點(diǎn)M,作AN⊥BC于點(diǎn)N,
由勾股定理得:AN2=202-BN2=132-(21-BN)2
BN=16,AN=12,
∴DM∥AN,
∴△BDM∽△BAN,
BD
AB
=
DM
AN
,即
2t
20
=
DM
12
,
DM=
6
5
t,
S=
1
2
×DE×DM=
1
2
(21-
21
10
t)•
6
5
t
S=-
63
50
t2+
63
5
t;
②當(dāng)10<t≤12時(shí),如圖2,
∵AN∥DM,
∴△BAN∽△BDM,
BD
AB
=
DM
AN
,即
2t
20
=
DM
12
,
DM=
6
5
t,
∵DE∥BC,
∴△DEA∽△BAC,
DE
BC
=
AD
AB
,
DE
21
2t-20
20
,
DE=
21
10
t-21,
S=
1
2
×DE×DM=
1
2
21
10
t-21)•
6
5
t
S=
63
50
t2-
63
5
t;
③當(dāng)D與A重合時(shí),2t=20,
解得:t=10,
S=S△ABC=
1
2
×BC×AN=
1
2
×21×12=126;
即S=
-
63
50
t2+
63
5
t(0<t<10)
63
50
t2-
63
5
t(10<t≤12)
126(t=10)
;

(3)S有最大值,
理由是:①當(dāng)0<t<10時(shí),S=-
63
50
t2+
63
5
t=-
63
50
(t-5)2+31.5;
當(dāng)t=5時(shí),此時(shí)S的最大值是31.5,
②當(dāng)10<t≤時(shí),
S=
63
50
t2-
63
5
t=
63
50
(t-5)2-31.5,
拋物線的開口向上,在對稱軸的右側(cè),s隨t的增大,當(dāng)t取12時(shí),S最大,最大值是30.24
③當(dāng)D與A重合時(shí),2t=20,
解得:t=10,
S=S△ABC=
1
2
×BC×AN=
1
2
×21×12=126;
綜合上述,當(dāng)t=10時(shí),S最大,最大值是126.
點(diǎn)評:本題考查了相似三角形的性質(zhì)和判定,二次函數(shù)的解析式,二次函數(shù)的最值,三角形的面積等知識點(diǎn)的綜合運(yùn)用,題目難度偏大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案