【題目】某品牌牛奶供應(yīng)商提供A、B、C、D四種不同口味的牛奶供學(xué)生飲用,學(xué)校為了了解學(xué)生對不同口味的牛奶的喜好,對全校訂牛奶的學(xué)生進行了隨機調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)統(tǒng)計圖的信息解決下列問題:

1)本次調(diào)查的學(xué)生有多少人?

2)補全上面的條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中C對應(yīng)的圓心角度數(shù)是   ;

4)若該校有400名學(xué)生訂了該品牌的牛奶,每名學(xué)生每天只訂一盒牛奶,要使學(xué)生能喝到自己喜歡的牛奶,則該牛奶供應(yīng)商送往該校的牛奶中,A、B口味的牛奶共約多少盒?

【答案】1150人;(2)見解析;(3144°;(4200

【解析】

1)利用A類別人數(shù)及其百分比可得總?cè)藬?shù);

2)總?cè)藬?shù)減去A、BD類別人數(shù),求得C的人數(shù),即可補全統(tǒng)計圖;

3)用360°乘以C類別人數(shù)所占比即可得出答案;

4)總?cè)藬?shù)乘以樣本中A、B人數(shù)占總?cè)藬?shù)的比例即可.

解:(1)本次調(diào)查的學(xué)生有:30÷20%150(人);

2C類別人數(shù)為:150-(30+45+15)60(人),補全條形圖如下:

3)扇形統(tǒng)計圖中C對應(yīng)的圓心角度數(shù)是360°×144°

故答案為:144°.

4)根據(jù)題意得:400×200(人),

答:該牛奶供應(yīng)商送往該校的牛奶中,AB口味的牛奶共約200盒.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,AOBC于點O,OEAB于點E,以點O為圓心,OE為半徑作半圓,交AO于點F

(1)求證:ACO的切線;

(2)若點FOA的中點,OE=3,求圖中陰影部分的面積;

(3)在(2)的條件下,點PBC邊上的動點,當(dāng)PE+PF取最小值時,直接寫出BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201265日是世界環(huán)境日,南寧市某校舉行了“綠色家園”演講比賽,賽后整理參賽同學(xué)的成績,制作成直方圖(如圖).

1)分數(shù)段在______范圍的人數(shù)最多;

2)全校共有________人參加比賽;

3)學(xué)校決定選派本次比賽成績最好的3人參加南寧市中學(xué)生環(huán)保演講決賽,并為參賽選手準備了紅、藍、白顏色的上衣各1件和2條白色、1條藍色的褲子.請用“列表法”或“樹形圖法”表示上衣和褲子搭配的所有可能出現(xiàn)的結(jié)果,并求出上衣和能搭配成同一種顏色的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,內(nèi)接于,點分別是,的中點,,,則的度數(shù)是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點是等邊三角形內(nèi)一點,且,,若將繞著點逆時針旋轉(zhuǎn)后得到,則的度數(shù)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示在矩形ABCD中,AB6,AD3,點E、F分別是邊DC、DA的三等分點(DEEC,DFAF),四邊形DFGE為矩形,連接BG

1)問題發(fā)現(xiàn):在圖(1)中,   ;

2)拓展探究:將圖(1)中的矩形DFGE繞點D旋轉(zhuǎn)一周,在旋轉(zhuǎn)過程中的大小有無變化?請僅就圖(2)的情形給出證明;

3)問題解決:當(dāng)矩形DFGE旋轉(zhuǎn)至B、G、E三點共線時,請直接寫出線段CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,BC=3,動點出發(fā),以每秒1個單位的速度,沿射線方向移動,作關(guān)于直線的對稱,設(shè)點的運動時間為

1)若

①如圖2,當(dāng)點B’落在AC上時,顯然PCB’是直角三角形,求此時t的值

②是否存在異于圖2的時刻,使得PCB’是直角三角形?若存在,請直接寫出所有符合題意的t的值?若不存在,請說明理由

2)當(dāng)P點不與C點重合時,若直線PB’與直線CD相交于點M,且當(dāng)t3時存在某一時刻有結(jié)論∠PAM=45°成立,試探究:對于t3的任意時刻,結(jié)論∠PAM=45°是否總是成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)yx0)的圖象與直線ymx交于點C,直線ly4分別交兩函數(shù)圖象于點A1,4)和點B,過點BBDl交反比例函數(shù)圖象于點 D

1)求反比例函數(shù)的解析式;

2)當(dāng)BD2AB時,求點B的坐標(biāo);

3)在(2)的條件下,直接寫出不等式mx的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E為圓O上的一點,C為劣弧EB的中點.CD于點C,交的直徑AB的延長線于點D.延長線段AE和線段BC,使之交于點F

1)求證:都是等腰三角形;

3)若,,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案