【題目】如圖①,點D是等邊△ABC的邊BC上一點,連接AD,以AD為一邊,向右作等邊三角形ADE,連接CE,求證:AC=CD+CE.
(類比探究)
(1)如果點D在BC的延長線上,其它條件不變,請在圖②的基礎上畫出滿足條件的圖形,寫出線段AC,CD,CE之間的數(shù)量關系,并說明理由.
(2)如果點D在CB的延長線上,請在圖③的基礎上畫出滿足條件的圖形,并直接寫出AC,CD,CE之間的數(shù)量關系,不需要說明理由.數(shù)量關系:_______.
【答案】證明見解析;類比探究:(1)CE﹣CD=AC;(2)AC=CD﹣CE.
【解析】
先證明△ABD≌△ACE,得出BD=CE,即可證出CE+CD=BD+CD=BC=AC;
類比探究:
(1)先證明△ABD≌△ACE,得出BD=CE,即可證出CE-CD=BD-CD=BC=AC;
(2)先證明△ABD≌△ACE,得出BD=CE,即可得出數(shù)量關系:AC=CD-CE.
∵△ABC和△ADE均為等邊三角形,
∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE,
∴CE+CD=BD+CD=BC=AC;
類比探究:( 1)CE﹣CD=AC;
如圖②:
∵△ABC和△ADE均為等邊三角形,
∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE,
∴CE﹣CD=BD﹣CD=BC=AC.
( 2)數(shù)量關系:AC=CD﹣CE.
如圖③:
∵△ABC和△ADE均為等邊三角形,
∴AB=AC=BC,AD=AE,∠BAC=∠DAE=60°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE,
∴CD﹣CE=CD﹣BD=BC=AC.
故答案為:AC=CD﹣CE.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是
A.一個游戲中獎的概率是,則做100次這樣的游戲一定會中獎
B.為了了解全國中學生的心理健康狀況,應采用普查的方式
C.一組數(shù)據(jù)0,1,2,1,1的眾數(shù)和中位數(shù)都是1
D.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某測量小組為了測量山BC的高度,在地面A處測得山頂B的仰角45°,然后沿著坡度為i=1:的坡面AD走了200米達到D處,此時在D處測得山頂B的仰角為60°,求山高BC(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,,,對角線,相交于點,將直線繞點順時針旋轉,分別交,于點,,下列說法不正確的是( )
A. 當時,四邊形一定為平行四邊形
B. 當四邊形為直角梯形時,線段
C. 當時,四邊形一定為菱形
D. 在旋轉的過程中,線段與總相等
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AB=AC,∠BAC=90°,點D是平面內一點;
(1)如圖1, BD⊥CD,∠DCA=30°,則∠BAD=
(2)如圖2,若∠BDC=45°,點F是CD中點,求證:AF⊥CD;
(3)如圖3,∠BDA=3∠CBD,BD=,求△BCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是某同學對多項式(x2-4x+2)(x2-4x+6)+4進行因式分解的過程.
解:設x2-4x=y
原式=(y+2)(y+6)+4 (第一步)
= y2+8y+16 (第二步)
=(y+4)2 (第三步)
=(x2-4x+4)2 (第四步)
回答下列問題:
(1)該同學第二步到第三步運用了因式分解的_______.
A.提取公因式 B.平方差公式 C.兩數(shù)和的完全平方公式 D.兩數(shù)差的完全平方公式
(2)該同學因式分解的結果是否徹底?________.(填“徹底”或“不徹底”)
若不徹底,請直接寫出因式分解的最后結果_________.
(3)請你模仿以上方法嘗試對多項式(x2-2x)(x2-2x+2)+1進行因式分解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ABC=90°,BA=BC,直線MN是過點A的直線CD⊥MN于點D,連接BD.
(1)觀察猜想張老師在課堂上提出問題:線段DC,AD,BD之間有什么數(shù)量關系.經過觀察思考,小明出一種思路:如圖1,過點B作BE⊥BD,交MN于點E,進而得出:DC+AD= BD.
(2)探究證明
將直線MN繞點A順時針旋轉到圖2的位置寫出此時線段DC,AD,BD之間的數(shù)量關系,并證明
(3)拓展延伸
在直線MN繞點A旋轉的過程中,當△ABD面積取得最大值時,若CD長為1,請直接寫BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com