【題目】如圖,△ABC中,AD⊥BC于D,若BD=AD,F(xiàn)D=CD.

(1)求證:∠FBD=∠CAD;

(2)求證:BE⊥AC.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析

【解析】

(1)求出∠ADC=BDF=90°,根據(jù)SASADC≌△BDF,根據(jù)全等三角形的性質(zhì)推出∠FBD=CAD即可;

(2)根據(jù)三角形的內(nèi)角和定理求出∠FBD+BFD=90°,推出∠AFE+EAF=90°,在AFE中,根據(jù)三角形的內(nèi)角和定理求出∠AEF即可.

(1)ADBC,

∴∠ADC=BDF=90°,

∵在ADC和△BDF

∴△ADC≌△BDF(SAS),

∴∠FBD=CAD;

(2)∵∠BDF=90°,

∴∠FBD+BFD=90°,

∵∠AFE=BFD,由(1)知:∠FBD=CAD,

∴∠CAD+AFE=90°,

∴∠AEF=180°﹣(CAD+AFE)=90°,

BEAC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】海南有豐富的旅游產(chǎn)品.某校九年級(jí)(1)班的同學(xué)就部分旅游產(chǎn)品的喜愛(ài)情況對(duì)游客隨機(jī)調(diào)查,要求游客在列舉的旅游產(chǎn)品中選出喜愛(ài)的產(chǎn)品,且只能選一項(xiàng).以下是同學(xué)們整理的不完整的統(tǒng)計(jì)圖:

根據(jù)以上信息完成下列問(wèn)題:
(1)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)隨機(jī)調(diào)查的游客有人;在扇形統(tǒng)計(jì)圖中,A部分所占的圓心角是度;
(3)請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)在1500名游客中喜愛(ài)攀錦的約有人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四邊形ABCD中,A=C=90°,BE平分ABCDF平分CDA

1)作出符合本題的幾何圖形;

2)求證:BEDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某通訊公司推出A、B兩種手機(jī)話(huà)費(fèi)套餐,這兩種套餐每月都有一定的固定費(fèi)用和免費(fèi)通話(huà)時(shí)間,超過(guò)免費(fèi)通話(huà)時(shí)間的部分收費(fèi)標(biāo)準(zhǔn)為:A套餐a元/分,B套餐b元/分,使用A、B兩種套餐的通話(huà)費(fèi)用y(元)與通話(huà)時(shí)間x(分)之間的函數(shù)圖象如圖所示.

(1)當(dāng)手機(jī)通話(huà)時(shí)間為50分鐘時(shí),寫(xiě)出A、B兩種套餐的通話(huà)費(fèi)用.
(2)求a,b的值.
(3)當(dāng)選擇B種套餐比A種套餐更合算時(shí),求通話(huà)時(shí)間x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線(xiàn),點(diǎn)E、M在BC上,則∠EAN=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC 頂點(diǎn)的坐標(biāo)分別為 A (1,-1)、B(3,-1)、C(4,1).

⑴將△ABC向上平移1個(gè)單位,再向左平移1個(gè)單位,請(qǐng)畫(huà)出平移后得到的△A1B1C1并寫(xiě)出點(diǎn) A1B1、C1 的坐標(biāo);

⑵若△A1B1C1 與△A1B1D 全等(D 點(diǎn)與 C1 不重合),直接寫(xiě)出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】宜興科技公司生產(chǎn)銷(xiāo)售一種電子產(chǎn)品,該產(chǎn)品總成本包括技術(shù)成本、制造成本、銷(xiāo)售成本三部分,經(jīng)核算,2013年該產(chǎn)品各部分成本所占比例約為2:a:1.且2013年該產(chǎn)品的技術(shù)成本、制造成本分別為400萬(wàn)元、1400萬(wàn)元.
(1)確定a的值,并求2013年產(chǎn)品總成本為多少萬(wàn)元;
(2)為降低總成本,該公司2014年及2015年增加了技術(shù)成本投入,確保這兩年技術(shù)成本都比前一年增加一個(gè)相同的百分?jǐn)?shù)m(m<50%),制造成本在這兩年里都比前一年減少一個(gè)相同的百分?jǐn)?shù)2m;同時(shí)為了擴(kuò)大銷(xiāo)售量,2015年的銷(xiāo)售成本將在2013年的基礎(chǔ)上提高10%,經(jīng)過(guò)以上變革,預(yù)計(jì)2015年該產(chǎn)品總成本達(dá)到2013年該產(chǎn)品總成本的 ,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為1,E是AD邊上一動(dòng)點(diǎn),AE=m,將△ABE沿BE折疊后得到△GBE.延長(zhǎng)BG交直線(xiàn)CD于點(diǎn)F.

(1)若∠ABE:∠BFC=n,則n=
(2)當(dāng)E運(yùn)動(dòng)到AD中點(diǎn)時(shí),求線(xiàn)段GF的長(zhǎng);
(3)若限定F僅在線(xiàn)段CD上(含端點(diǎn))運(yùn)動(dòng),直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的面積法給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個(gè)全等的直角三角形如圖1或圖2擺放時(shí),都可以用面積法來(lái)證明,下面是小聰利用圖1證明勾股定理的過(guò)程:

將兩個(gè)全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2.

證明:連結(jié)DB,過(guò)點(diǎn)DBC邊上的高DF,則DF=EC=b﹣a,

∵S四邊形ADCB=SACD+SABC= 12 b2+ 12 ab.

∵S四邊形ADCB=SADB+SDCB= 12 c2+ 12 a(b﹣a)

∴ 12 b2+ 12 ab= 12 c2+ 12 a(b﹣a)

∴a2+b2=c2

請(qǐng)參照上述證法,利用圖2完成下面的證明.

將兩個(gè)全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

同步練習(xí)冊(cè)答案