【題目】在 RtABC 中,ACB 90,點(diǎn)O在 BC 上,經(jīng)過點(diǎn) 的⊙ O 與 BC ,AB 分別相交于點(diǎn) D ,E 連接 CE , CE CA .
(1)求證: CE 是⊙ O 的切線;
(2)若 tan ABC ,BD 4,求CD 的長.
【答案】(1)見解析;(2) .
【解析】
(1) 連接OE,由CE=CA得∠A=∠CEA,由OE=OB得∠B=∠OEB,故∠CEA+∠OEB=90°,所以∠OEC =90°;
(2)設(shè)CD的長為,則BC=+4,CO=2+,由tan∠ABC=,得AC=BC=(+4) ,由CE=CA,得CE=(+4) ,利用勾股定理得 .
(1) 解:連接OE,
∵CE=CA,
∴∠A=∠CEA,
∵OE=OB,
∴∠B=∠OEB,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠CEA+∠OEB=90°,
∴∠OEC =90°,
∴CE是⊙的切線
(2)設(shè)CD的長為,
∵BD=4,
∴BC=+4,
CO=2+,
∵tan∠ABC=,
∴AC=BC=(+4) ,
∵CE=CA,
∴CE=(+4)
在Rt△CEO中,,
∴,
∴,
∴CD的長為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式,并探究
①
②
③
……
(1)寫出第④個(gè)等式:______;
(2)某同學(xué)發(fā)現(xiàn),四個(gè)連續(xù)自然數(shù)的積加上1后,結(jié)果都將是某一個(gè)整數(shù)的平方.當(dāng)這四個(gè)數(shù)較大時(shí)可以進(jìn)行簡(jiǎn)便計(jì)算,如:
.
請(qǐng)你猜想寫出第n個(gè)等式,用含有n的代數(shù)式表示,并通過計(jì)算驗(yàn)證你的猜想.
(3)任何實(shí)數(shù)的平方都是非負(fù)數(shù)(即),一個(gè)非負(fù)數(shù)與一個(gè)正數(shù)的和必定是一個(gè)正數(shù)(即時(shí),).根據(jù)以上的規(guī)律和方法試說明:無論x為什么實(shí)數(shù),多項(xiàng)式的值永遠(yuǎn)都是正數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】保護(hù)生態(tài)環(huán)境,建設(shè)綠色社會(huì)已經(jīng)從理念變?yōu)槿藗兊男袆?dòng),某化工廠2014年1月的利潤為200萬元.設(shè)2014年1月為第1個(gè)月,第x個(gè)月的利潤為y萬元.由于排污超標(biāo),該廠決定從2014年1月底起適當(dāng)限產(chǎn),并投入資金進(jìn)行治污改造,導(dǎo)致月利潤明顯下降,從1月到5月,y與x成反比例,到5月底,治污改造工程順利完工,從這時(shí)起,該廠每月的利潤比前一個(gè)月增加20萬元(如圖).
(1)分別求該化工廠治污期間及治污改造工程完工后,y與x之間的函數(shù)關(guān)系式;
(2)治污改造工程順利完工后經(jīng)過幾個(gè)月,該廠月利潤才能達(dá)到200萬元?
(3)當(dāng)月利潤少于100萬元時(shí),為該廠資金緊張期,問該廠資金緊張期共有幾個(gè)月?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形方格中,每個(gè)小正方形的邊長都為1,頂點(diǎn)都在網(wǎng)格線交點(diǎn)處的三角形, 是一個(gè)格點(diǎn)三角形.
在圖中,請(qǐng)判斷與是否相似,并說明理由;
在圖中,以O為位似中心,再畫一個(gè)格點(diǎn)三角形,使它與的位似比為2:1
在圖中,請(qǐng)畫出所有滿足條件的格點(diǎn)三角形,它與相似,且有一條公共邊和一個(gè)公共角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我校舉行的小科技創(chuàng)新發(fā)明比賽中,共有60人獲獎(jiǎng),組委會(huì)原計(jì)劃按照一等獎(jiǎng)5人,二等獎(jiǎng)15人,三等獎(jiǎng)40人進(jìn)行獎(jiǎng)勵(lì).后來經(jīng)學(xué)校研究決定,在該項(xiàng)獎(jiǎng)勵(lì)總獎(jiǎng)金不變的情況下,各等級(jí)獲獎(jiǎng)人數(shù)實(shí)際調(diào)整為:一等獎(jiǎng)10人,二等獎(jiǎng)20人,三等獎(jiǎng)30人,調(diào)整后一等獎(jiǎng)每人獎(jiǎng)金降低80元,二等獎(jiǎng)每人獎(jiǎng)金降低50元,三等獎(jiǎng)每人獎(jiǎng)金降低30元,調(diào)整前二等獎(jiǎng)每人獎(jiǎng)金比三等獎(jiǎng)每人獎(jiǎng)金多70元,則調(diào)整后一等獎(jiǎng)每人獎(jiǎng)金比二等獎(jiǎng)每人獎(jiǎng)金多____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=AC,AB的垂直平分線DE交AB、AC于點(diǎn)E、D,若△ABC和△BCD的周長分別為21cm和13cm,求△ABC的各邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt中,,AB=BC,F為AB上一點(diǎn),連接CF,過B作BH⊥CF于G,交AC于H.
(1)如圖1,延長GH到點(diǎn)E,使GE=GC,連接AE,求的度數(shù);
(2)如圖2,若F為AB中點(diǎn),連接FH,請(qǐng)?zhí)骄?/span>BH、FH、CF的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x=;
(1)求x2+y2﹣xy的值;
(2)若x的小數(shù)部分為a,y的小數(shù)部分為b,求(a+b)2+的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com