【題目】乘法公式的探究及應(yīng)用.
(1)如圖1,可以求出陰影部分的面積是(寫成兩數(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個長方形,它的寬是 , 長是 , 面積是 . (寫成多項(xiàng)式乘法的形式)
(3)比較左、右兩圖的陰影部分面積,可以得到乘法公式 . (用式子表達(dá))
(4)運(yùn)用你所得到的公式,計算下列各題: ①10.3×9.7
②(2m+n﹣p)(2m﹣n+p)
【答案】
(1)a2﹣b2
(2)a﹣b;a+b;(a+b)(a﹣b)
(3)(a+b)(a﹣b)=a2﹣b2
(4)解:①解:原式=(10+0.3)×(10﹣0.3)
=102﹣0.32
=100﹣0.09
=99.91;
②解:原式=[2m+(n﹣p)][2m﹣(n﹣p)]
=(2m)2﹣(n﹣p)2
=4m2﹣n2+2np﹣p2.
【解析】解:(1)利用正方形的面積公式可知:陰影部分的面積=a2﹣b2; 所以答案是:a2﹣b2;(2)由圖可知矩形的寬是a﹣b,長是a+b,所以面積是(a+b)(a﹣b);所以答案是:a﹣b,a+b,(a+b)(a﹣b),(3)(a+b)(a﹣b)=a2﹣b2(等式兩邊交換位置也可);所以答案是:(a+b)(a﹣b)=a2﹣b2;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】游泳池中有一批小朋友,男生戴藍(lán)色游泳帽,女生戴紅色游泳帽.如果每位男孩看到藍(lán)色與紅色的游泳帽一樣多,而每位女孩看到藍(lán)色的游泳帽比紅色的多1倍.設(shè)男孩有x人,則可列方程( 。
A. x=2(x﹣2) B. x﹣1=2(x﹣2) C. x=2(x﹣1) D. x﹣1=2x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中秋節(jié)前夕,旺客隆超市采購了一批土特產(chǎn),根據(jù)以往銷售經(jīng)驗(yàn),每天的售價與銷售量之間有如下表的關(guān)系:
設(shè)當(dāng)售價從38元/千克下調(diào)到x元/千克時,銷售量為y千克.
(1)根據(jù)上述表格中提供的數(shù)據(jù),通過在直角坐標(biāo)系中描點(diǎn)、連線等方法,猜測并求出y與x之間的函數(shù)表達(dá)式;
(2)如果這種土特產(chǎn)的成本價是20元/千克,為使某一天的利潤為780元,那么這一天每千克的售價應(yīng)為多少元?(利潤=銷售總金額-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四張撲克牌的牌面如圖1,將撲克牌洗勻后,如圖2背面朝上放置在桌面上,小明和小亮設(shè)計了A、B兩種游戲方案:
方案A:隨機(jī)抽一張撲克牌,牌面數(shù)字為5時小明獲勝;否則小亮獲勝.
方案B:隨機(jī)同時抽取兩張撲克牌,兩張牌面數(shù)字之和為偶數(shù)時,小明獲勝;否則小亮獲勝.
請你幫小亮選擇其中一種方案,使他獲勝的可能性較大,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-2x-m=0有實(shí)數(shù)根.
(1)求m的取值范圍;
(2)若a,b是此方程的兩個根,且滿足,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng) x=﹣1 時,代數(shù)式 2ax3﹣3bx+8 的值為 18,這時 6b﹣4a+2 的值為( )
A. 20 B. 22 C. ﹣18 D. ﹣22
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,如果點(diǎn)P(x,y)的坐標(biāo)滿足x+y=xy,那么稱P為和諧點(diǎn).
(1)若點(diǎn)A(a,2)是正比例函數(shù)y=kx(k≠0,k為常數(shù))上的一個和諧點(diǎn),求這個正比例函數(shù)的解析式;
(2)試判斷函數(shù)y=﹣2x+1的圖象上是否存在和諧點(diǎn)?若存在,求出和諧點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)直線l:y=kx+2經(jīng)過和諧點(diǎn)P,且與反比例函數(shù)G:y=﹣ 交于M、N兩點(diǎn),若點(diǎn)P的縱坐標(biāo)為3,求出直線l的解析式,并在x軸上找一點(diǎn)Q使得QM+QN最。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com