【題目】如圖數(shù)軸上A、BC三點對應的數(shù)分別是a、b、7,滿足,,P為數(shù)軸上一動點,PA出發(fā),沿數(shù)軸正方向以每秒個單位長度的速度勻速運動,Q從點C出發(fā)在射線CA上向點A勻速運動,P、Q兩點同時出發(fā).

1)求a、b的值

2)當P運動到線段OB的中點時,Q運動的位置恰好是線段AB靠近點B的三等分點,求點Q的運動速度

3)在的條件下,PQ兩點間的距離是6個單位長度時,OP的長.

【答案】1,;(2)點Q的運動速度每秒1個單位長度;(3OP的長為

【解析】

由點C表示7,可得,,,A、B兩點表示的數(shù),可得a、b的值;

先計算P運動時間,根據(jù)點Q運動的位置恰好是線段AB靠近點B的三等分點,可知:,可得點Q的路程,根據(jù)時間可得結論;

t秒時,,分兩種情況:如圖1,QP的右側時,如圖2,QP的左側時;根據(jù)分別列式可得t的值,再計算OP的長.

解:,

A表示的數(shù)為,,

表示的數(shù)為7,

,

,

,

B表示的數(shù)為6,;.

POB的中點時,

,

,

由題意得:,

,

,

答:點Q的運動速度每秒1個單位長度;.

t秒時,,

分兩種情況:

如圖1,QP的右側時,

,

,

,

,

,

如圖2,QP的左側時,

,

,

,

,

,

綜上所述,OP的長為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,AB8厘米,如果動點P在線段AB上以2厘米/秒的速度由A點向B點運動,同時動點Q在以1厘米/秒的速度線段BC上由C點向B點運動,當點P到達B點時整個運動過程停止.設運動時間為t秒,當AQDP時,t的值為_____秒.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P出發(fā),沿所示方向運動,每當碰到長方形OABC的邊時會進行反彈,反彈時反射角等于入射角,當點P2018次碰到長方形的邊時,點P的坐標為______

【答案】

【解析】

根據(jù)反射角與入射角的定義作出圖形;由圖可知,每6次反彈為一個循環(huán)組依次循環(huán),用2018除以6,根據(jù)商和余數(shù)的情況確定所對應的點的坐標即可.

解:如圖所示:經過6次反彈后動點回到出發(fā)點

,

當點P2018次碰到矩形的邊時為第337個循環(huán)組的第2次反彈,

P的坐標為

故答案為:

【點睛】

此題主要考查了點的坐標的規(guī)律,作出圖形,觀察出每6次反彈為一個循環(huán)組依次循環(huán)是解題的關鍵.

型】填空
束】
15

【題目】為了保護環(huán)境,某公交公司決定購買AB兩種型號的全新混合動力公交車共10輛,其中A種型號每輛價格為a萬元,每年節(jié)省油量為萬升;B種型號每輛價格為b萬元,每年節(jié)省油量為萬升:經調查,購買一輛A型車比購買一輛B型車多20萬元,購買2A型車比購買3B型車少60萬元.

請求出ab

若購買這批混合動力公交車每年能節(jié)省萬升汽油,求購買這批混合動力公交車需要多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某果品超市經銷一種水果,已知該水果的進價為每千克15元,通過一段時間的銷售情況發(fā)現(xiàn),該種水果每周的銷售總額相同,且每周的銷售量y(千克)與每千克售價x(元)的關系如表所示

每千克售價x(元)

25

30

40

每周銷售量y(千克)

240

200

150

1)寫出每周銷售量y(千克)與每千克售價x(元)的函數(shù)關系式;

2)由于銷售淡季即將來臨,超市要完成每周銷售量不低于300千克的任務,則該種水果每千克售價最多定為多少元?

3)在(2)的基礎上,超市銷售該種水果能否到達每周獲利1200元?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線與x軸交于A、D兩點,與y軸交于點B,四邊形OBCD是矩形,點A的坐標為1,0,點B的坐標為0,4,已知點Em,0是線段DO上的動點,過點E作PEx軸交拋物線于點P,交BC于點G,交BD于點H

1求該拋物線的解析式;

2當點P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;

32的條件下,是否存在這樣的點P,使得以P、B、G為頂點的三角形與DEH相似?若存在,求出此時m的值;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在矩形ABCD中,AB=9,BC=12,點M從點A出發(fā),以每秒2個單位長度的速度沿AB方向在AB上運動,以點M為圓心,MA長為半徑畫圓,如圖2,過點M作NMAB,交M于點N,設運動時間為t秒.

(1)填空:BD=   ,BM=   ;(請用準確數(shù)值或含t的代數(shù)式表示)

(2)當M與BD相切時,

求t的值;

CDN的面積.

(3)當CND為直角三角形時,求出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,然后解決問題:

截長法與補短法在證明線段的和、差、倍、分等問題中有著廣泛的應用.具體的做法是在某條線段上截取一條線段等于某特定線段,或將某條線段延長,使之與某特定線段相等,再利用全等三角形的性質等有關知識來解決數(shù)學問題.

如圖1,在ABC中,若AB12,AC8,求BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點E使DEAD,再連接BE,把ABAC2AD集中在ABE中.利用三角形三邊的關系即可得4<AE<20 ,則2<AD<10.

1)問題解決:受到上題解法的啟發(fā),如圖2,在正方形ABCD中,已知:∠EAF=45°,角的兩邊AE、AF分別與BCCD相交于點E、F,若BE=2,DF=3,求EF的長.可延長 CDE′,使得DE′BE,連接AE′,先證ABE≌△ADE′,進一步證明 AEF≌△AE′F , 即可得EF=E′F, 那么EF=_________.

2)問題拓展:

如圖3,在⊙O中,AB、AD是⊙O的弦,且AB=AD,M、N是⊙O上的兩點,∠MANBAD.

①如圖4,連接MN、MD,求證:MH=BM+DH,DMAN

②若點C(點C不與點A、DN重合)上,連接CB、CD分別交AM、AN或其延長線于點EF,直接寫出EFBE、DF之間的等式關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABORtCBD在平面直角坐標系中的位置如圖所示,∠ABO=∠CBD90°,若點A2,﹣2),∠CBA60°BOBD,則點C的坐標是( 。

A. 22B. 1,C. ,1D. 2,2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016個正整數(shù)1、2、3、4、……、2016按如圖方式排列成一個表,用一方框按如圖所示的方式任意框住9個數(shù).(方框只能平移)

(1)若框住的9個數(shù)中,正中間的一個數(shù)為39,則:這九個數(shù)的和為__________.

(2)方框能否框住這樣的9個數(shù),它們的和等于2016?若能,請寫出這9個數(shù);若不能,請說明理由。

(3)若任意框住9個數(shù)的和記為S,則:S的最大值與最小值之差等于__________.

查看答案和解析>>

同步練習冊答案