【題目】在等邊△ABC的頂點(diǎn)AC處各有一只蝸牛,它們同時(shí)出發(fā),分別以每分鐘1米的速度由AB和由CA爬行,其中一只蝸牛爬到終點(diǎn)時(shí),另一只也停止運(yùn)動(dòng),經(jīng)過(guò)t分鐘后,它們分別爬行到D、E處,請(qǐng)問(wèn):

1)如圖1,在爬行過(guò)程中,CDBE始終相等嗎,請(qǐng)證明?

2)如果將原題中的“由AB和由CA爬行”,改為“沿著ABCA的延長(zhǎng)線爬行”,EBCD交于點(diǎn)Q,其他條件不變,蝸牛爬行過(guò)程中∠CQE的大小保持不變,請(qǐng)利用圖2說(shuō)明:∠CQE=60°;

3)如果將原題中“由CA爬行”改為“沿著BC的延長(zhǎng)線爬行,連接DEACF”,其他條件不變,如圖3,則爬行過(guò)程中,證明:DF=EF

【答案】(1)相等,證明見解析;(2)證明見解析;(3)證明見解析.

【解析】

1)先證明△ACD≌△CBE,再由全等三角形的性質(zhì)即可證得CD=BE;

2)先證明△BCD≌△ABE,得到∠BCD=ABE,求出∠DQB=BCQ+CBQ=ABE+CBQ=180°-ABC,∠CQE=180°-DQB,即可解答;

3)如圖3,過(guò)點(diǎn)DDGBCAC于點(diǎn)G,根據(jù)等邊三角形的三邊相等,可以證得AD=DG=CE;進(jìn)而證明△DGF和△ECF全等,最后根據(jù)全等三角形的性質(zhì)即可證明.

1)解:CDBE始終相等,理由如下:

如圖1AB=BC=CA,兩只蝸牛速度相同,且同時(shí)出發(fā),

CE=AD,∠A=BCE=60°

在△ACD與△CBE中,

AC=CB,∠A=BCE,AD=CE

∴△ACD≌△CBESAS),

CD=BE,即CDBE始終相等;

2)證明:根據(jù)題意得:CE=AD,

AB=AC,

AE=BD,

∴△ABC是等邊三角形,

AB=BC,∠BAC=ACB=60°,

∵∠EAB+ABC=180°,∠DBC+ABC=180°,

∴∠EAB=DBC

在△BCD和△ABE中,

BC=AB,∠DBC=EAB,BD=AE

∴△BCD≌△ABESAS),

∴∠BCD=ABE

∴∠DQB=BCQ+CBQ=ABE+CBQ=180°-ABC=180°-60°=120°,

∴∠CQE=180°-DQB=60°,即CQE=60°;

3)解:爬行過(guò)程中,DF始終等于EF是正確的,理由如下:

如圖,過(guò)點(diǎn)DDGBCAC于點(diǎn)G

∴∠ADG=B=AGD=60°,∠GDF=E

∴△ADG為等邊三角形,

AD=DG=CE,

在△DGF和△ECF中,

GFD=CFE,∠GDF=E,DG=EC

∴△DGF≌△EDFAAS),

DF=EF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B,C三名大學(xué)生競(jìng)選系學(xué)生會(huì)主席,他們的筆試成績(jī)和口試成績(jī)(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計(jì),如表和圖1:

競(jìng)選人

A

B

C

筆試

85

95

90

口試

80

85


(1)請(qǐng)將表和圖1中的空缺部分補(bǔ)充完整.
(2)競(jìng)選的最后一個(gè)程序是由本系的300名學(xué)生進(jìn)行投票,三位候選人的得票情況如圖2(沒(méi)有棄權(quán)票,每名學(xué)生只能推薦一個(gè)),則B在扇形統(tǒng)計(jì)圖中所占的圓心角是度.
(3)若每票計(jì)1分,系里將筆試、口試、得票三項(xiàng)測(cè)試得分按4:3:3的比例確定個(gè)人成績(jī),請(qǐng)計(jì)算三位候選人的最后成績(jī),并根據(jù)成績(jī)判斷誰(shuí)能當(dāng)選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(4,1)的拋物線交y軸于點(diǎn)A,交x軸于B,C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知C點(diǎn)坐標(biāo)為(6,0).

(1)求此拋物線的解析式;
(2)已知點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),且位于A,C兩點(diǎn)之間.問(wèn):當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAC的面積最大?求出△PAC的最大面積;
(3)連接AB,過(guò)點(diǎn)B作AB的垂線交拋物線于點(diǎn)D,以點(diǎn)C為圓心的圓與拋物線的對(duì)稱軸l相切,先補(bǔ)全圖形,再判斷直線BD與⊙C的位置關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AE平分∠BAC,BD=DCDEBC,EMAB.若AB=9,AC=5,則AM的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,∠B=D=90°,EF分別是邊BCCD上的點(diǎn),且∠EAF=BAD.求證:EF=BE+FD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為8的等邊三角形ABC中,點(diǎn)D沿射線AB方向由AB運(yùn)動(dòng),點(diǎn)F同時(shí)從C出發(fā),以相同的速度每秒1個(gè)單位長(zhǎng)度沿射線BC方向運(yùn)動(dòng),過(guò)點(diǎn)DDEAC,連結(jié)DF交射線AC于點(diǎn)G

1)當(dāng)DFAB時(shí),求AD的長(zhǎng);

2)求證:EGAC

3)點(diǎn)DA出發(fā),經(jīng)過(guò)幾秒,CG1.6?直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣x2+bx+c,當(dāng)2<x<5時(shí),y隨x的增大而減小,則實(shí)數(shù)b的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知 A0,a),Bb0),Cbc)三點(diǎn),其中a,b,c滿足關(guān)系式:

1)求AB,C三點(diǎn)的坐標(biāo);

2)如果在第二象限內(nèi)有一點(diǎn)Pm),若四邊形ABOP的面積與三角形ABC 的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù) 是常數(shù)).
(1)求證:不論 為何值,該函數(shù)的圖象與x軸沒(méi)有公共點(diǎn);
(2)把該函數(shù)的圖象沿 軸向下平移多少個(gè)單位長(zhǎng)度后,得到的函數(shù)的圖象與 軸只有一個(gè)公共點(diǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案