【題目】已知:如圖,點N為△ABC的內(nèi)心,延長AN交BC于點D,交△ABC的外接圓于點E.
(1)求證:EB=EN=EC;
(2)求證:NE2=AEDE.

【答案】證明:(1)連接BN,
∵點N為△ABC的內(nèi)心,
∴∠1=∠2,∠3=∠4.
∴∠BCE=∠1,
∴EB=EC.
∵∠5與∠2都是弧EC所對的圓周角,
∴∠5=∠2=∠1.
∴∠4+∠5=∠3+∠1.
∵∠NBE=∠4+∠5,∠BNE=∠3+∠1,
∴∠NBE=∠BNE.
∴EB=EN.
∴EB=EN=EC.
(2)由(1)知∠5=∠2=∠1,∠BED=∠AEB,
∴△BED∽△AEB.

即BE2=AEDE.
∵EB=EN,
∴NE2=AEDE.

【解析】點N為△ABC的內(nèi)心,易證EB=EC,只需證明EB=EN,或EN=EC,可以通過等角對等邊得出;欲證NE2=AEDE,即證BE2=AEDE,可以通過證明△BED∽△AEB得出.
【考點精析】利用三角形的內(nèi)切圓與內(nèi)心對題目進(jìn)行判斷即可得到答案,需要熟知三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點,它叫做三角形的內(nèi)心.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,MAN=90°,射線AE在這個角的內(nèi)部,點BC分別在∠MAN的邊AM、AN上,且AB=AC,CFAE于點F,BDAE于點D.求證:ABD≌△CAF

2)如圖2,點B、C分別在∠MAN的邊AM、AN上,點E、F都在∠MAN內(nèi)部的射線AD上,∠1、2分別是ABE、CAF的外角.已知AB=AC,且∠1=2=BAC.求證:ABE≌△CAF;

3)如圖3,在ABC中,AB=ACABBC.點D在邊BC上,CD=2BD,點E、F在線段AD上,∠1=2=BAC.若ABC的面積為15,求ACFBDE的面積之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若AD∥BC,AB∥DE,DF∥AC,∠OEC=72°,∠OCE=64°,則∠B=_______,∠F=_______,∠BAD=_______,∠ADF=_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,∠ABC=45°,點DBC邊上一動點(與點B,C不重合),點E與點D關(guān)于直線AC對稱,連結(jié)AE,過點BBFED的延長線于點F.

(1)依題意補全圖形;

(2)當(dāng)AE=BD時,用等式表示線段DEBF之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)先化解再求值4-2a-6-2(2a2-2a+3),其中,a=-

(2)已知x=-2,y=3,x-2(x-+(-x+) 的值,某同學(xué)在做此題時,把x=-2 看成了x=2, 但結(jié)果也正確,請你幫助分析原因。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是8×8的正方形網(wǎng)格,每個小方格都是邊長為1的正方形,A、B是格點(網(wǎng)格線的交點).以網(wǎng)格線所在直線為坐標(biāo)軸,在網(wǎng)格中建立平面直角坐標(biāo)系xOy,使點A坐標(biāo)為(﹣2,4).

(1)在網(wǎng)格中,畫出這個平面直角坐標(biāo)系;

(2)在第二象限內(nèi)的格點上找到一點C,使A、B、C三點組成以AB為底邊的等腰三角形,且腰長是無理數(shù),則點C的坐標(biāo)是   ;并畫出△ABC關(guān)于y軸對稱的△A′B′C′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某一景點等候檢票的時間,隨機調(diào)查了部分游客,統(tǒng)計了他們進(jìn)入該景點等候檢票的時間,并繪制成如圖表.

等候時間x(min)

頻數(shù)(人數(shù))

頻率

10≤x<20

8

0.2

20≤x<30

14

a

30≤x<40

10

0.25

40≤x<50

b

0.125

50≤x<60

3

0.075

合計

40

1

(1)這里采用的調(diào)查方式是   (填普查抽樣調(diào)查),樣本容量是   ;

(2)表中a=   ,b=   ,并請補全頻數(shù)分布直方圖;

(3)根據(jù)上述圖表制作扇形統(tǒng)計圖,則“40≤x<50”所在扇形的圓心角度數(shù)是   °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,以定線段AB為直徑作半圓O,P為半圓上任意一點(異于A、B),過點P作半圓O的切線分別交過A、B兩點的切線于D、C,連接OC、BP,過點O作OM∥CD分別交BC與BP于點M、N.下列結(jié)論:
①S四邊形ABCD= ABCD;
②AD=AB;
③AD=ON;
④AB為過O、C、D三點的圓的切線.
其中正確的個數(shù)有( 。

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀完成問題:

數(shù)軸上,已知點A、B、C.其中,C為線段AB的中點:

(1)如圖,點A表示的數(shù)為-1,點B表示的數(shù)為3,則線段AB的長為 , C點表示的數(shù)為 ;

2)若點A表示的數(shù)為-1,C點表示的數(shù)為2,則點B表示的數(shù)為 ;

3)若點A表示的數(shù)為t,點B表示的為t+2,則線段AB的長為 ,C點表示的數(shù)為2,則t= ;

4)點A表示的數(shù)為,點B表示的為C點位置在-23之間(包括邊界點),若C點表示的數(shù)為,則++的最小值為 ,++的最大值為 .

查看答案和解析>>

同步練習(xí)冊答案