【題目】閱讀下列材料,并回答問題.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方,這個結(jié)論就是著名的勾股定理.請利用這個結(jié)論,完成下面活動:
一個直角三角形的兩條直角邊分別為,那么這個直角三角形斜邊長為____;
如圖①,于,求的長度;
如圖②,點在數(shù)軸上表示的數(shù)是____請用類似的方法在圖2數(shù)軸上畫出表示數(shù)的點(保留痕跡).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°.
(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請標(biāo)明字母)
①作線段AC的垂直平分線l,交AC于點O;
②連接BO并延長,在BO的延長線上截取OD,使得OD=OB;
③連接DA、DC.
(2)判斷四邊形ABCD的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點在原點,對稱軸為軸.一次函數(shù)的圖象與二次函數(shù)的圖象交于,兩點(在的左側(cè)),且點坐標(biāo)為.平行于軸的直線過點.
求一次函數(shù)與二次函數(shù)的解析式;
判斷以線段為直徑的圓與直線的位置關(guān)系,并給出證明;
把二次函數(shù)的圖象向右平移個單位,再向下平移個單位,二次函數(shù)的圖象與軸交于,兩點,一次函數(shù)圖象交軸于點.當(dāng)為何值時,過,,三點的圓的面積最?最小面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是菱形的對角線,分別是邊的中點,連接,,則下列結(jié)論錯誤的是( )
A. B. C. 四邊形是菱形D. 四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.
(1)求證:∠1=∠2;
(2)連結(jié)BE、DE,判斷四邊形BCDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AB:y=kx+b經(jīng)過點B(1,4)、A(5,0)兩點,且與直線y=2x-4交于點C.
(1)求直線AB的解析式并求出點C的坐標(biāo);
(2)求出直線y=kx+b、直線y=2x-4及與y軸所圍成的三角形面積;
(3)現(xiàn)有一點P在直線AB上,過點P作PQ∥y軸交直線y=2x-4于點Q,若線段PQ的長為3,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(材料閱讀)我們曾解決過課本中的這樣一道題目:
如圖,四邊形是正方形,為邊上一點,延長至,使,連接.……
提煉1:繞點順時針旋轉(zhuǎn)90°得到;
提煉2:;
提煉3:旋轉(zhuǎn)、平移、軸對稱是圖形全等變換的三種方式.
(問題解決)(1)如圖,四邊形是正方形,為邊上一點,連接,將沿折疊,點落在處,交于點,連接.可得: °;三者間的數(shù)量關(guān)系是
(2)如圖,四邊形的面積為8,,,連接.求的長度.
(3)如圖,在中,,,點在邊上,.寫出間的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點,與軸交于點 ,與直線相交于點 ,
(1)求直線 的函數(shù)表達(dá)式;
(2)求 的面積;
(3)在 軸上是否存在一點 ,使是等腰三角形.若不存在,請說明理由;若存在,請直接寫出點 的坐標(biāo)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長為4 cm,面積為12 cm2,腰AB的垂直平分線EF交AB于點E,交AC于點F,若D為BC邊上的中點,M為線段EF上一點,則△BDM的周長最小值為( )
A. 5 cm B. 6 cm C. 8 cm D. 10 cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com