【題目】如圖,在△ABC中,AB=AC,點O為∠BAC的平分線上一點,連接OB、OC.
(1)求證:OB=OC;
(2)若OA=OC,∠BAC=46°,求∠OCB的度數(shù).
【答案】(1)見解析.(2)44°
【解析】
(1)由OA平分∠BAC可知∠BAO=∠CAO,由SAS即可證明△BAO≌△CAO,從而得出結(jié)論.
(2)由(1)可知∠OAC=∠OAB=23°,由OA=OC可知∠OAC=∠OCA=23°,由三角形外角性質(zhì)可知∠COB=2∠OAC+2∠OAB=2∠BAC即可解答.
證明:(1)∵OA平分∠BAC,
∴∠BAO=∠CAO=∠BAC.
在△BAO和△CAO中,
∴△BAO≌△CAO(SAS)
∴OB=OC.
(2)由(1)得∴∠BAO=∠CAO=∠BAC,OB=OC,
∵OA=OC,
∴OA=OB=OC,
∴∠OAC=∠OCA=∠BAO=∠OBA=23°,
∵∠COB=∠OAC+∠OCA+∠BAO+∠OBA=2∠BAC=92°.
∴∠OCB=(180°﹣92°)÷2=44°
科目:初中數(shù)學 來源: 題型:
【題目】如圖, 拋物線與軸交于點A(-1,0),頂點坐標(1,n)與軸的交點在(0,2),(0,3)之間(包 含端點),則下列結(jié)論:①;②;③對于任意實數(shù)m,總成立;④關(guān)于的方程有兩個不相等的實數(shù)根.其中結(jié)論正確的個數(shù)為
A. 1 個 B. 2 個 C. 3 個 D. 4 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)證明推斷:如圖①,在△ABC中,D,E分別是邊BC,AB的中點,AD,CE相交于點G,求證:.
(2)類比探究:如圖②,在正方形ABCD中,對角線AC、BD交于點O,E為邊BC的中點,AE、BD交于點F,若AB=6,求OF的長;
(3)拓展運用:若正方形ABCD變?yōu)?/span>□ABCD,如圖③,連結(jié)DE交AC于點G,若四邊形OFEG的面積為,求□ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+c經(jīng)過點A(0,2)和點B(-1,0).
(1)求此拋物線的解析式;
(2)將此拋物線平移,使其頂點坐標為(2,1),平移后的拋物線與x軸的兩個交點分別為點C,D(點C在點D的左邊),求點C,D的坐標;
(3)將此拋物線平移,設其頂點的縱坐標為m,平移后的拋物線與x軸兩個交點之間的距離為n,若1<m<3,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,對角線AC,BD交于點O,E是BC上一點,連接DE,點F在邊CD上,且AF⊥CD交DE于點G,連接CG.已知∠DEC=45°,GC⊥BC.
(1)若∠DCG=30°,CD=4,求AC的長.
(2)求證:AD=CG+DG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某文具店經(jīng)銷甲、乙兩種不同的筆記本,已知:兩種筆記本的進價之和為10元,甲種筆記本每本獲利2元,乙種筆記本每本獲利1元,小玲同學買4本甲種筆記本和3本乙種筆記本共用了47元.
(1)甲、乙兩種筆記本的進價分別是多少元?
(2)該文具店購入這兩種筆記本共60本,花費不超過296元,則購買甲種筆記本多少本時文具店獲利最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D是AB的中點,AC<BC.
(1)試用無刻度的直尺和圓規(guī),在BC上作一點E,使得直線ED平分ABC的周長;(不要求寫作法,但要保留作圖痕跡).
(2)在(1)的條件下,若DE分Rt△ABC面積為1﹕2兩部分,請?zhí)骄?/span>AC與BC的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了提高學生的綜合素質(zhì),成立了以下社團:.機器人,.圍棋,.羽毛球,.電影配音.每人只能加入一個社團.為了解學生參加社團的情況,從加社團的學生中隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,其中圖中所占扇形的圓心角為.
根據(jù)以上信息,解答下列問題:
這次被調(diào)查的學生共有 人;
請你將條形統(tǒng)計圖補充完整;
若該校共有學生加入了社團,請你估計這名學生中有多少人參加了羽毛球社團;
在機器人社團活動中,由于甲、乙、丙、丁四人平時的表現(xiàn)優(yōu)秀,現(xiàn)決定從這四人中任選兩名參加機器人大賽.用樹狀圖或列表法求恰好選中甲、乙兩位同學的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com