【題目】已知二次函數(shù)的圖象的頂點(diǎn)在原點(diǎn)O,且經(jīng)過點(diǎn)A(1,).

(1)求此函數(shù)的解析式;

(2)將該拋物線沿著y軸向上平移后頂點(diǎn)落在點(diǎn)P處,直線x=2分別交原拋物和新拋物線于點(diǎn)MN,且SPMN=求:MN的長以及平移后拋物線的解析式.

【答案】(1)y=x2;(2)3,y=x2+3

【解析】

(1)根據(jù)題意可直接設(shè)yax2把點(diǎn)(1,﹣3)代入得a=﹣3,所以y=﹣3x2

(2)設(shè)平移后yx2+dd>0),MNd根據(jù)題意得出Sd=3,即可求得d的值,從而求得平移后的解析式

1)∵拋物線頂點(diǎn)是原點(diǎn),可設(shè)yax2,把點(diǎn)A(1,)代入,a,所以這個(gè)二次函數(shù)的關(guān)系式為yx2

(2)設(shè)平移后yx2+dd>0),∴MNd,Sd=3,∴d=3,∴yx2+3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AOB中,C,D分別是OA、OB邊上的點(diǎn),將OCD繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到OC′D′.如圖,若∠AOB=90°,OA=OB,C,D分別為OA,OB的中點(diǎn).求證:

(1)AC′=BD′;

(2)AC′BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點(diǎn)P,連結(jié)EF、EO,若DE=,DPA=45°.

(1)求⊙O的半徑;

(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過A(0,4),B(2,0),C(-2,0)三點(diǎn).

(1)求二次函數(shù)的表達(dá)式;

(2)x軸上有一點(diǎn)D(-4,0),將二次函數(shù)的圖象沿射線DA方向平移,使圖象再次經(jīng)過點(diǎn)B.

①求平移后圖象頂點(diǎn)E的坐標(biāo);

②直接寫出此二次函數(shù)的圖象在A,B兩點(diǎn)之間(含A,B兩點(diǎn))的曲線部分在平移過程中所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件10,出廠價(jià)為每件12,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=-10x+500

1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?

2設(shè)李明獲得的利潤為W(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?

3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤不低于3000,那么政府為他承擔(dān)的總差價(jià)最少為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是由些棱長的正方體小木塊搭建成的幾何體的主視圖、俯視圖和左視圖,請(qǐng)你觀察它是由多少塊小木塊組成的;在俯視圖中標(biāo)出相應(yīng)位置立方體的個(gè)數(shù);求出該幾何體的表面積(包含底面).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】佳佳向探究一元三次方程x3+2x2﹣x﹣2=0的解的情況,根據(jù)以往的學(xué)習(xí)經(jīng)驗(yàn),他想到了方程與函數(shù)的關(guān)系,一次函數(shù)y=kx+b(k≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一元一次方程kx+b(k≠0)的解,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交點(diǎn)的橫坐標(biāo)即為一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函數(shù)y=x2﹣2x﹣3的圖象與x軸的交點(diǎn)為(﹣1,0)和(3,0),交點(diǎn)的橫坐標(biāo)﹣1和3即為x2﹣2x﹣3=0的解.

根據(jù)以上方程與函數(shù)的關(guān)系,如果我們直到函數(shù)y=x3+2x2﹣x﹣2的圖象與x軸交點(diǎn)的橫坐標(biāo),即可知方程x3+2x2﹣x﹣2=0的解.

佳佳為了解函數(shù)y=x3+2x2﹣x﹣2的圖象,通過描點(diǎn)法畫出函數(shù)的圖象.

x

﹣3

﹣2

﹣1

0

1

2

y

﹣8

0

m

﹣2

0

12

(1)直接寫出m的值,并畫出函數(shù)圖象;

(2)根據(jù)表格和圖象可知,方程的解有   個(gè),分別為   ;

(3)借助函數(shù)的圖象,直接寫出不等式x3+2x2>x+2的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)200人到300人之間的旅行團(tuán)隊(duì)準(zhǔn)備外出旅游,旅行團(tuán)隊(duì)向某汽車運(yùn)輸公司租用可以乘坐30人、乘坐45人的兩種客車若干輛,其中大型客車輛數(shù)要多于中型客車輛數(shù).按照預(yù)定的租車方案,如果大型客車都坐滿,中型客車有一輛就會(huì)空出少于一半的座位.但是汽車運(yùn)輸公司發(fā)過來的車輛,車型與對(duì)應(yīng)的輛數(shù)剛好搞反了,這樣就有5個(gè)人沒有座位可坐.這個(gè)旅游團(tuán)一共有______個(gè)人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)圖象的一部分,拋物線的頂點(diǎn)坐標(biāo)A(1,3),與x軸的一個(gè)交點(diǎn)B(4,0),有下列結(jié)論:①2a+b=0,②abc>0;③方程ax2+bx+c=3有兩個(gè)相等的實(shí)數(shù)根,④當(dāng)y<0時(shí),﹣2<x<4,其中正確的是( 。

A. ②③ B. ①③ C. ①③④ D. ①②③④

查看答案和解析>>

同步練習(xí)冊答案