(2003•宜昌)如圖,有一座石拱橋的橋拱是以O(shè)為圓心,OA為半徑的一段圓。
(1)請你確定弧AB的中點;(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)若∠AOB=120°,OA=4米,請求出石拱橋的高度.

【答案】分析:(1)根據(jù)垂徑定理可以作弦AB的垂直平分線,和弧的交點即是弧的中點;
(2)根據(jù)等腰三角形的三線合一和30°的直角三角形的性質(zhì)求得弦的弦心距,再進一步求得其石拱橋的高度.
解答:解:(1)如圖:

(2)設(shè)和AB的交點是D,交弧于點C,
在Rt△AOD中,∠AOD=60°,
∴∠OAD=30°,
∴OD=2(米).
∴CD=OA-OD=2(米)
答:石拱橋的高度是2米.
點評:綜合考查了垂徑定理;等腰三角形的三線合一和30°所對的直角邊是斜邊的一半等知識點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2003•宜昌)如圖,PA切⊙O于點A,割線PBC交⊙O于B、C兩點,∠APC的平分線分別交AC、AB于D、E兩點.請在圖中找出2對相似三角形,并從中選擇一對相似三角形說明其為什么相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2003•宜昌)如圖,矩形ABCD是一塊需探明地下資源的土地,E是AB的中點,EF∥AD交CD于點F,探測裝置(設(shè)為點P)從E出發(fā)沿EF前行時,可探測的區(qū)域是以點P為中心,PA為半徑的一個圓(及其內(nèi)部).當(探測裝置)P到達點P處時,⊙P與BC、EF、AD分別交于G、F、H點.
(1)求證:FD=FC;
(2)指出并說明CD與⊙P的位置關(guān)系;
(3)若四邊形ABGH為正方形,且三角形DFH的面積為(2-2)平方千米,當(探測裝置)P從點P出發(fā)繼續(xù)前行多少千米到達點P1處時,A、B、C、D四點恰好在⊙P1上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《四邊形》(06)(解析版) 題型:解答題

(2003•宜昌)如圖,矩形ABCD是一塊需探明地下資源的土地,E是AB的中點,EF∥AD交CD于點F,探測裝置(設(shè)為點P)從E出發(fā)沿EF前行時,可探測的區(qū)域是以點P為中心,PA為半徑的一個圓(及其內(nèi)部).當(探測裝置)P到達點P處時,⊙P與BC、EF、AD分別交于G、F、H點.
(1)求證:FD=FC;
(2)指出并說明CD與⊙P的位置關(guān)系;
(3)若四邊形ABGH為正方形,且三角形DFH的面積為(2-2)平方千米,當(探測裝置)P從點P出發(fā)繼續(xù)前行多少千米到達點P1處時,A、B、C、D四點恰好在⊙P1上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年湖北省宜昌市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•宜昌)如圖,矩形ABCD是一塊需探明地下資源的土地,E是AB的中點,EF∥AD交CD于點F,探測裝置(設(shè)為點P)從E出發(fā)沿EF前行時,可探測的區(qū)域是以點P為中心,PA為半徑的一個圓(及其內(nèi)部).當(探測裝置)P到達點P處時,⊙P與BC、EF、AD分別交于G、F、H點.
(1)求證:FD=FC;
(2)指出并說明CD與⊙P的位置關(guān)系;
(3)若四邊形ABGH為正方形,且三角形DFH的面積為(2-2)平方千米,當(探測裝置)P從點P出發(fā)繼續(xù)前行多少千米到達點P1處時,A、B、C、D四點恰好在⊙P1上.

查看答案和解析>>

同步練習冊答案